R. Esmaeeli, Haniph Aliniagerdroudbari, Ashkan Nazari, S. R. Hashemi, Muapper Alhadri, Waleed Zakri, A. Mohammed, C. Batur, Siamak Farhad
{"title":"轮胎监测用彩虹压电能量采集系统的优化","authors":"R. Esmaeeli, Haniph Aliniagerdroudbari, Ashkan Nazari, S. R. Hashemi, Muapper Alhadri, Waleed Zakri, A. Mohammed, C. Batur, Siamak Farhad","doi":"10.1115/ES2018-7496","DOIUrl":null,"url":null,"abstract":"Ambient energy harvesting using piezoelectric transducers is becoming popular to provide power for small microelectronics devices. The deflection of tires during rotation is an example of the source of energy for electric power generation. This generated power can be used to feed tire self-powering sensors for bicycles, cars, trucks, and airplanes. The aim of this study is to optimize the energy efficiency of a rainbow shape piezoelectric transducer mounted on the inner layer of a pneumatic tire for providing enough power for microelectronics devices required to monitor tires. For this aim a rainbow shape piezoelectric transducer is adjusted with the tire dimensions and excited based on the car speed and strain. The geometry and load resistance effects of the piezoelectric transducer is optimized using Multiphysics modeling and finite element analysis.","PeriodicalId":298211,"journal":{"name":"ASME 2018 12th International Conference on Energy Sustainability","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Optimization of a Rainbow Piezoelectric Energy Harvesting System for Tire Monitoring Applications\",\"authors\":\"R. Esmaeeli, Haniph Aliniagerdroudbari, Ashkan Nazari, S. R. Hashemi, Muapper Alhadri, Waleed Zakri, A. Mohammed, C. Batur, Siamak Farhad\",\"doi\":\"10.1115/ES2018-7496\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ambient energy harvesting using piezoelectric transducers is becoming popular to provide power for small microelectronics devices. The deflection of tires during rotation is an example of the source of energy for electric power generation. This generated power can be used to feed tire self-powering sensors for bicycles, cars, trucks, and airplanes. The aim of this study is to optimize the energy efficiency of a rainbow shape piezoelectric transducer mounted on the inner layer of a pneumatic tire for providing enough power for microelectronics devices required to monitor tires. For this aim a rainbow shape piezoelectric transducer is adjusted with the tire dimensions and excited based on the car speed and strain. The geometry and load resistance effects of the piezoelectric transducer is optimized using Multiphysics modeling and finite element analysis.\",\"PeriodicalId\":298211,\"journal\":{\"name\":\"ASME 2018 12th International Conference on Energy Sustainability\",\"volume\":\"86 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASME 2018 12th International Conference on Energy Sustainability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/ES2018-7496\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME 2018 12th International Conference on Energy Sustainability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/ES2018-7496","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimization of a Rainbow Piezoelectric Energy Harvesting System for Tire Monitoring Applications
Ambient energy harvesting using piezoelectric transducers is becoming popular to provide power for small microelectronics devices. The deflection of tires during rotation is an example of the source of energy for electric power generation. This generated power can be used to feed tire self-powering sensors for bicycles, cars, trucks, and airplanes. The aim of this study is to optimize the energy efficiency of a rainbow shape piezoelectric transducer mounted on the inner layer of a pneumatic tire for providing enough power for microelectronics devices required to monitor tires. For this aim a rainbow shape piezoelectric transducer is adjusted with the tire dimensions and excited based on the car speed and strain. The geometry and load resistance effects of the piezoelectric transducer is optimized using Multiphysics modeling and finite element analysis.