{"title":"基于音频的起始检测在咀嚼循环分割中的应用","authors":"D. Kopyto, Rui Zhang, O. Amft","doi":"10.1145/3460421.3478819","DOIUrl":null,"url":null,"abstract":"In this paper we compare three onset detection algorithms for acoustic chewing cycle detection, which is a basic step in eating detection and automated dietary monitoring. We introduce a spectral flux algorithm that uses the spectrogram of a chewing sequence to compute a novelty function. Furthermore, beat tracking, in particular the notion of a predominant local pulse is introduced. We compare the two algorithms to a baseline energy-based segmentation in a chewing dataset with seven participants consuming pieces of six different foods, including in total 9818 annotated chewing cycles. Best performance was achieved for the beat tracking algorithm with 83% F-measure after leave-one-participant-out cross validation.","PeriodicalId":395295,"journal":{"name":"Proceedings of the 2021 ACM International Symposium on Wearable Computers","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Audio-Based Onset Detection applied to Chewing Cycle Segmentation\",\"authors\":\"D. Kopyto, Rui Zhang, O. Amft\",\"doi\":\"10.1145/3460421.3478819\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we compare three onset detection algorithms for acoustic chewing cycle detection, which is a basic step in eating detection and automated dietary monitoring. We introduce a spectral flux algorithm that uses the spectrogram of a chewing sequence to compute a novelty function. Furthermore, beat tracking, in particular the notion of a predominant local pulse is introduced. We compare the two algorithms to a baseline energy-based segmentation in a chewing dataset with seven participants consuming pieces of six different foods, including in total 9818 annotated chewing cycles. Best performance was achieved for the beat tracking algorithm with 83% F-measure after leave-one-participant-out cross validation.\",\"PeriodicalId\":395295,\"journal\":{\"name\":\"Proceedings of the 2021 ACM International Symposium on Wearable Computers\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2021 ACM International Symposium on Wearable Computers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3460421.3478819\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 ACM International Symposium on Wearable Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3460421.3478819","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Audio-Based Onset Detection applied to Chewing Cycle Segmentation
In this paper we compare three onset detection algorithms for acoustic chewing cycle detection, which is a basic step in eating detection and automated dietary monitoring. We introduce a spectral flux algorithm that uses the spectrogram of a chewing sequence to compute a novelty function. Furthermore, beat tracking, in particular the notion of a predominant local pulse is introduced. We compare the two algorithms to a baseline energy-based segmentation in a chewing dataset with seven participants consuming pieces of six different foods, including in total 9818 annotated chewing cycles. Best performance was achieved for the beat tracking algorithm with 83% F-measure after leave-one-participant-out cross validation.