基于音频的起始检测在咀嚼循环分割中的应用

D. Kopyto, Rui Zhang, O. Amft
{"title":"基于音频的起始检测在咀嚼循环分割中的应用","authors":"D. Kopyto, Rui Zhang, O. Amft","doi":"10.1145/3460421.3478819","DOIUrl":null,"url":null,"abstract":"In this paper we compare three onset detection algorithms for acoustic chewing cycle detection, which is a basic step in eating detection and automated dietary monitoring. We introduce a spectral flux algorithm that uses the spectrogram of a chewing sequence to compute a novelty function. Furthermore, beat tracking, in particular the notion of a predominant local pulse is introduced. We compare the two algorithms to a baseline energy-based segmentation in a chewing dataset with seven participants consuming pieces of six different foods, including in total 9818 annotated chewing cycles. Best performance was achieved for the beat tracking algorithm with 83% F-measure after leave-one-participant-out cross validation.","PeriodicalId":395295,"journal":{"name":"Proceedings of the 2021 ACM International Symposium on Wearable Computers","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Audio-Based Onset Detection applied to Chewing Cycle Segmentation\",\"authors\":\"D. Kopyto, Rui Zhang, O. Amft\",\"doi\":\"10.1145/3460421.3478819\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we compare three onset detection algorithms for acoustic chewing cycle detection, which is a basic step in eating detection and automated dietary monitoring. We introduce a spectral flux algorithm that uses the spectrogram of a chewing sequence to compute a novelty function. Furthermore, beat tracking, in particular the notion of a predominant local pulse is introduced. We compare the two algorithms to a baseline energy-based segmentation in a chewing dataset with seven participants consuming pieces of six different foods, including in total 9818 annotated chewing cycles. Best performance was achieved for the beat tracking algorithm with 83% F-measure after leave-one-participant-out cross validation.\",\"PeriodicalId\":395295,\"journal\":{\"name\":\"Proceedings of the 2021 ACM International Symposium on Wearable Computers\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2021 ACM International Symposium on Wearable Computers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3460421.3478819\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 ACM International Symposium on Wearable Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3460421.3478819","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

声学咀嚼周期检测是饮食检测和自动化饮食监测的基本步骤,本文比较了三种声学咀嚼周期检测的起始检测算法。本文介绍了一种利用咀嚼序列谱图计算新颖性函数的谱通量算法。此外,还介绍了拍跟踪,特别是显性局部脉冲的概念。我们将这两种算法与咀嚼数据集中的基线能量分割进行比较,该数据集中有7名参与者食用6种不同的食物,包括总共9818个注释的咀嚼循环。在留一参与者交叉验证后,节拍跟踪算法的f值达到83%,达到最佳性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Audio-Based Onset Detection applied to Chewing Cycle Segmentation
In this paper we compare three onset detection algorithms for acoustic chewing cycle detection, which is a basic step in eating detection and automated dietary monitoring. We introduce a spectral flux algorithm that uses the spectrogram of a chewing sequence to compute a novelty function. Furthermore, beat tracking, in particular the notion of a predominant local pulse is introduced. We compare the two algorithms to a baseline energy-based segmentation in a chewing dataset with seven participants consuming pieces of six different foods, including in total 9818 annotated chewing cycles. Best performance was achieved for the beat tracking algorithm with 83% F-measure after leave-one-participant-out cross validation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信