整合理论

Adel Boules
{"title":"整合理论","authors":"Adel Boules","doi":"10.2307/j.ctvd58v18.6","DOIUrl":null,"url":null,"abstract":"The Lebesgue measure on ?n (presented in section 8.4) is a pivotal component of this chapter. The approach in the chapter is to extend the positive linear functional provided by the Riemann integral on the space of continuous, compactly supported functions on ?n (presented in section 8.1). An excursion on Radon measures is included at the end of section 8.4. The rest of the sections are largely independent of sections 8.1 and 8.4 and constitute a deep introduction to general measure and integration theories. Topics include measurable spaces and measurable functions, Carathéodory’s theorem, abstract integration and convergence theorems, complex measures and the Radon-Nikodym theorem, Lp spaces, product measures and Fubini’s theorem, and a good collection of approximation theorems. The closing section of the book provides a glimpse of Fourier analysis and gives a nice conclusion to the discussion of Fourier series and orthogonal polynomials started in section 4.10.","PeriodicalId":182769,"journal":{"name":"Fundamentals of Mathematical Analysis","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integration Theory\",\"authors\":\"Adel Boules\",\"doi\":\"10.2307/j.ctvd58v18.6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Lebesgue measure on ?n (presented in section 8.4) is a pivotal component of this chapter. The approach in the chapter is to extend the positive linear functional provided by the Riemann integral on the space of continuous, compactly supported functions on ?n (presented in section 8.1). An excursion on Radon measures is included at the end of section 8.4. The rest of the sections are largely independent of sections 8.1 and 8.4 and constitute a deep introduction to general measure and integration theories. Topics include measurable spaces and measurable functions, Carathéodory’s theorem, abstract integration and convergence theorems, complex measures and the Radon-Nikodym theorem, Lp spaces, product measures and Fubini’s theorem, and a good collection of approximation theorems. The closing section of the book provides a glimpse of Fourier analysis and gives a nice conclusion to the discussion of Fourier series and orthogonal polynomials started in section 4.10.\",\"PeriodicalId\":182769,\"journal\":{\"name\":\"Fundamentals of Mathematical Analysis\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fundamentals of Mathematical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2307/j.ctvd58v18.6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fundamentals of Mathematical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2307/j.ctvd58v18.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

关于?n的勒贝格测度(见第8.4节)是本章的关键组成部分。本章的方法是将Riemann积分提供的正线性泛函扩展到?n上的连续紧支持函数空间(在8.1节中介绍)。在第8.4节末尾包含了关于氡测量的偏移。其余部分在很大程度上独立于8.1节和8.4节,构成了对一般测度和积分理论的深入介绍。课程内容包括可测空间和可测函数、carathacimodory定理、抽象积分和收敛定理、复测度和Radon-Nikodym定理、Lp空间、积测度和富比尼定理,以及一系列近似定理。本书的结尾部分提供了傅里叶分析的一瞥,并为4.10节开始的傅里叶级数和正交多项式的讨论给出了一个很好的结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integration Theory
The Lebesgue measure on ?n (presented in section 8.4) is a pivotal component of this chapter. The approach in the chapter is to extend the positive linear functional provided by the Riemann integral on the space of continuous, compactly supported functions on ?n (presented in section 8.1). An excursion on Radon measures is included at the end of section 8.4. The rest of the sections are largely independent of sections 8.1 and 8.4 and constitute a deep introduction to general measure and integration theories. Topics include measurable spaces and measurable functions, Carathéodory’s theorem, abstract integration and convergence theorems, complex measures and the Radon-Nikodym theorem, Lp spaces, product measures and Fubini’s theorem, and a good collection of approximation theorems. The closing section of the book provides a glimpse of Fourier analysis and gives a nice conclusion to the discussion of Fourier series and orthogonal polynomials started in section 4.10.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信