3-(苄基)吲哚-2- 1异构体的QSAR和QAAR研究用于开发帕金森病的PET示踪剂

S. Bhayye, A. Saha
{"title":"3-(苄基)吲哚-2- 1异构体的QSAR和QAAR研究用于开发帕金森病的PET示踪剂","authors":"S. Bhayye, A. Saha","doi":"10.4018/IJQSPR.2018070107","DOIUrl":null,"url":null,"abstract":"Deposition of α–synuclein, tau and β–amyloid protein plaques in brain leads to neurodegeneration. A series of indolin derivatives, which can bind to α–synuclein and detect Parkinson's disease (PD), were used for development of QSAR and QAAR models. It is the first attempt of QSAR for any radiotracer agents used for detection of PD. The binding affinity against α–synuclein was used as dependent variable while independent variables, such as structural, topological, E-state keys, electronic, molecular shape analysis and spatial molecular descriptors were used for QSAR modeling. For QAAR modeling, the binding affinities of molecules for tau and β–amyloid along with different molecular descriptors were used as independent variables. All models were successfully developed using multiple linear regression method, and validated internally and externally, based on different standard criteria. This article describes how the derived models postulate that conformation of molecules and presence of unsaturated hydrocarbon chains, nitro, methoxy and amine functionalities play an important role in determining binding affinity.","PeriodicalId":230045,"journal":{"name":"Research Anthology on Diagnosing and Treating Neurocognitive Disorders","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"QSAR and QAAR Studies on Mixtures of 3-(Benzylidene)Indolin-2-One Isomers as Leads to Develop PET Radiotracers for Detection of Parkinson's Disease\",\"authors\":\"S. Bhayye, A. Saha\",\"doi\":\"10.4018/IJQSPR.2018070107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deposition of α–synuclein, tau and β–amyloid protein plaques in brain leads to neurodegeneration. A series of indolin derivatives, which can bind to α–synuclein and detect Parkinson's disease (PD), were used for development of QSAR and QAAR models. It is the first attempt of QSAR for any radiotracer agents used for detection of PD. The binding affinity against α–synuclein was used as dependent variable while independent variables, such as structural, topological, E-state keys, electronic, molecular shape analysis and spatial molecular descriptors were used for QSAR modeling. For QAAR modeling, the binding affinities of molecules for tau and β–amyloid along with different molecular descriptors were used as independent variables. All models were successfully developed using multiple linear regression method, and validated internally and externally, based on different standard criteria. This article describes how the derived models postulate that conformation of molecules and presence of unsaturated hydrocarbon chains, nitro, methoxy and amine functionalities play an important role in determining binding affinity.\",\"PeriodicalId\":230045,\"journal\":{\"name\":\"Research Anthology on Diagnosing and Treating Neurocognitive Disorders\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research Anthology on Diagnosing and Treating Neurocognitive Disorders\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/IJQSPR.2018070107\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research Anthology on Diagnosing and Treating Neurocognitive Disorders","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJQSPR.2018070107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

脑内α -突触核蛋白、tau和β -淀粉样蛋白斑块沉积导致神经变性。利用一系列吲哚啉衍生物结合α -突触核蛋白检测帕金森病(PD),建立了QSAR和QAAR模型。这是任何放射性示踪剂用于PD检测的QSAR的第一次尝试。以α-synuclein的结合亲和力为因变量,以结构、拓扑、e -状态键、电子、分子形状分析和空间分子描述符等自变量进行QSAR建模。在QAAR模型中,分子对tau和β -淀粉样蛋白的结合亲和力以及不同的分子描述符被用作自变量。采用多元线性回归方法成功建立了所有模型,并根据不同的标准标准进行了内部和外部验证。本文描述了衍生模型如何假设分子的构象和不饱和烃链、硝基、甲氧基和胺官能团的存在在决定结合亲和力方面发挥重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
QSAR and QAAR Studies on Mixtures of 3-(Benzylidene)Indolin-2-One Isomers as Leads to Develop PET Radiotracers for Detection of Parkinson's Disease
Deposition of α–synuclein, tau and β–amyloid protein plaques in brain leads to neurodegeneration. A series of indolin derivatives, which can bind to α–synuclein and detect Parkinson's disease (PD), were used for development of QSAR and QAAR models. It is the first attempt of QSAR for any radiotracer agents used for detection of PD. The binding affinity against α–synuclein was used as dependent variable while independent variables, such as structural, topological, E-state keys, electronic, molecular shape analysis and spatial molecular descriptors were used for QSAR modeling. For QAAR modeling, the binding affinities of molecules for tau and β–amyloid along with different molecular descriptors were used as independent variables. All models were successfully developed using multiple linear regression method, and validated internally and externally, based on different standard criteria. This article describes how the derived models postulate that conformation of molecules and presence of unsaturated hydrocarbon chains, nitro, methoxy and amine functionalities play an important role in determining binding affinity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信