单元异常:用于异常检测的现代越南视频数据集

D. Vo, T. Tran, Nguyen D. Vo, Khang Nguyen
{"title":"单元异常:用于异常检测的现代越南视频数据集","authors":"D. Vo, T. Tran, Nguyen D. Vo, Khang Nguyen","doi":"10.1109/NICS54270.2021.9701556","DOIUrl":null,"url":null,"abstract":"Anomaly detection in videos is of utmost importance for numerous tasks in the field of computer vision. We introduce the UIT-Anomaly dataset captured in Vietnam with a total duration of 200 minutes. It contains 224 videos with six different types of anomalies. Moreover, we apply a method for weakly supervised video anomaly detection, called Robust Temporal Feature Magnitude learning (RTFM) based on feature magnitude learning to detect abnormal snippets. The approached method yields competitive results, compared to other state-of-the-art algorithms using publicly available datasets such as ShanghaiTech and UCF–Crime.","PeriodicalId":296963,"journal":{"name":"2021 8th NAFOSTED Conference on Information and Computer Science (NICS)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"UIT-Anomaly: A Modern Vietnamese Video Dataset for Anomaly Detection\",\"authors\":\"D. Vo, T. Tran, Nguyen D. Vo, Khang Nguyen\",\"doi\":\"10.1109/NICS54270.2021.9701556\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Anomaly detection in videos is of utmost importance for numerous tasks in the field of computer vision. We introduce the UIT-Anomaly dataset captured in Vietnam with a total duration of 200 minutes. It contains 224 videos with six different types of anomalies. Moreover, we apply a method for weakly supervised video anomaly detection, called Robust Temporal Feature Magnitude learning (RTFM) based on feature magnitude learning to detect abnormal snippets. The approached method yields competitive results, compared to other state-of-the-art algorithms using publicly available datasets such as ShanghaiTech and UCF–Crime.\",\"PeriodicalId\":296963,\"journal\":{\"name\":\"2021 8th NAFOSTED Conference on Information and Computer Science (NICS)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 8th NAFOSTED Conference on Information and Computer Science (NICS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NICS54270.2021.9701556\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 8th NAFOSTED Conference on Information and Computer Science (NICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NICS54270.2021.9701556","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

视频异常检测在计算机视觉领域的许多任务中都是至关重要的。我们介绍了在越南捕获的总持续时间为200分钟的unit - anomaly数据集。它包含224个视频,有六种不同类型的异常。此外,我们应用了一种弱监督视频异常检测方法,称为基于特征幅度学习的鲁棒时间特征幅度学习(RTFM)来检测异常片段。与其他使用公开数据集(如ShanghaiTech和UCF-Crime)的最先进算法相比,该方法产生了具有竞争力的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
UIT-Anomaly: A Modern Vietnamese Video Dataset for Anomaly Detection
Anomaly detection in videos is of utmost importance for numerous tasks in the field of computer vision. We introduce the UIT-Anomaly dataset captured in Vietnam with a total duration of 200 minutes. It contains 224 videos with six different types of anomalies. Moreover, we apply a method for weakly supervised video anomaly detection, called Robust Temporal Feature Magnitude learning (RTFM) based on feature magnitude learning to detect abnormal snippets. The approached method yields competitive results, compared to other state-of-the-art algorithms using publicly available datasets such as ShanghaiTech and UCF–Crime.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信