多维变异的自适应粒子群优化

Toshiki Nishio, J. Kushida, Akira Hara, T. Takahama
{"title":"多维变异的自适应粒子群优化","authors":"Toshiki Nishio, J. Kushida, Akira Hara, T. Takahama","doi":"10.1109/IWCIA.2015.7449476","DOIUrl":null,"url":null,"abstract":"The paper presents adaptive particle swarm optimization with multi-dimensional mutation (MM-APSO), which can perform move efficient search than the conventional adaptive particle swarm optimization (APSO). In particular, it can solve non-separable fitness functions such as banana functions with high accuracy and rapid convergence. MM-APSO consists of APSO and additional two methods. One is multi-dimensional mutation, which uses movement vector of population. The other is reinitializing velocity to 0 when mutation occurs. Experiments were conducted on 10 unimodal and multimodal benchmark functions. The experimental results show that MM-APSO substantially enhances the performance of the APSO in terms of convergence speed and solution accuracy.","PeriodicalId":298756,"journal":{"name":"2015 IEEE 8th International Workshop on Computational Intelligence and Applications (IWCIA)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Adaptive particle swarm optimization with multi-dimensional mutation\",\"authors\":\"Toshiki Nishio, J. Kushida, Akira Hara, T. Takahama\",\"doi\":\"10.1109/IWCIA.2015.7449476\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper presents adaptive particle swarm optimization with multi-dimensional mutation (MM-APSO), which can perform move efficient search than the conventional adaptive particle swarm optimization (APSO). In particular, it can solve non-separable fitness functions such as banana functions with high accuracy and rapid convergence. MM-APSO consists of APSO and additional two methods. One is multi-dimensional mutation, which uses movement vector of population. The other is reinitializing velocity to 0 when mutation occurs. Experiments were conducted on 10 unimodal and multimodal benchmark functions. The experimental results show that MM-APSO substantially enhances the performance of the APSO in terms of convergence speed and solution accuracy.\",\"PeriodicalId\":298756,\"journal\":{\"name\":\"2015 IEEE 8th International Workshop on Computational Intelligence and Applications (IWCIA)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 8th International Workshop on Computational Intelligence and Applications (IWCIA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWCIA.2015.7449476\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 8th International Workshop on Computational Intelligence and Applications (IWCIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWCIA.2015.7449476","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了多维变异自适应粒子群优化算法(MM-APSO),该算法比传统的自适应粒子群优化算法(APSO)更能进行移动高效搜索。特别地,它可以求解香蕉函数等不可分适应度函数,精度高,收敛速度快。MM-APSO由APSO和附加两种方法组成。一种是利用种群的运动载体进行多维变异。另一个是在发生突变时将速度重新初始化为0。对10个单峰和多峰基准函数进行了实验。实验结果表明,MM-APSO在收敛速度和求解精度方面都有明显提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive particle swarm optimization with multi-dimensional mutation
The paper presents adaptive particle swarm optimization with multi-dimensional mutation (MM-APSO), which can perform move efficient search than the conventional adaptive particle swarm optimization (APSO). In particular, it can solve non-separable fitness functions such as banana functions with high accuracy and rapid convergence. MM-APSO consists of APSO and additional two methods. One is multi-dimensional mutation, which uses movement vector of population. The other is reinitializing velocity to 0 when mutation occurs. Experiments were conducted on 10 unimodal and multimodal benchmark functions. The experimental results show that MM-APSO substantially enhances the performance of the APSO in terms of convergence speed and solution accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信