声纳目标识别的神经网络

ACM-SE 28 Pub Date : 1990-04-01 DOI:10.1145/98949.99150
Michael O'Rourke, J. Wood
{"title":"声纳目标识别的神经网络","authors":"Michael O'Rourke, J. Wood","doi":"10.1145/98949.99150","DOIUrl":null,"url":null,"abstract":"This paper explores the area of sonar target recognition us­ ing a feedforward neural network trained with the backpropagation algorithm. Sixteen sonar waves from a variety of targets were used in the experiment Noise was introduced to each waveform at 13,10, and 3 db signal to noise ratio. The network was trained with different com­ binations of the noisy waveforms and tested with noisy data not used in the training process. 100% correct classi­ fication was obtained in all cases.","PeriodicalId":409883,"journal":{"name":"ACM-SE 28","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A neural network for sonar target recognition\",\"authors\":\"Michael O'Rourke, J. Wood\",\"doi\":\"10.1145/98949.99150\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper explores the area of sonar target recognition us­ ing a feedforward neural network trained with the backpropagation algorithm. Sixteen sonar waves from a variety of targets were used in the experiment Noise was introduced to each waveform at 13,10, and 3 db signal to noise ratio. The network was trained with different com­ binations of the noisy waveforms and tested with noisy data not used in the training process. 100% correct classi­ fication was obtained in all cases.\",\"PeriodicalId\":409883,\"journal\":{\"name\":\"ACM-SE 28\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1990-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM-SE 28\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/98949.99150\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM-SE 28","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/98949.99150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文探讨了用反向传播算法训练的前馈神经网络在声纳目标识别领域的应用。实验中使用了来自不同目标的16个声纳波形,每个波形分别以13、10和3 db的信噪比引入噪声。用不同的噪声波形组合对网络进行训练,并用训练过程中不使用的噪声数据对网络进行测试。所有病例的分类均100%正确。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A neural network for sonar target recognition
This paper explores the area of sonar target recognition us­ ing a feedforward neural network trained with the backpropagation algorithm. Sixteen sonar waves from a variety of targets were used in the experiment Noise was introduced to each waveform at 13,10, and 3 db signal to noise ratio. The network was trained with different com­ binations of the noisy waveforms and tested with noisy data not used in the training process. 100% correct classi­ fication was obtained in all cases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信