球体上360度图像的内部编码

Navid Mahmoudian Bidgoli, Thomas Maugey, A. Roumy
{"title":"球体上360度图像的内部编码","authors":"Navid Mahmoudian Bidgoli, Thomas Maugey, A. Roumy","doi":"10.1109/PCS48520.2019.8954538","DOIUrl":null,"url":null,"abstract":"Omni-directional images are characterized by their high resolution (usually 8K) and therefore require high compression efficiency. Existing methods project the spherical content onto one or multiple planes and process the mapped content with classical 2D video coding algorithms. However, this projection induces sub-optimality. Indeed, after projection, the statistical properties of the pixels are modified, the connectivity between neighboring pixels on the sphere might be lost, and finally, the sampling is not uniform. Therefore, we propose to process uniformly distributed pixels directly on the sphere to achieve high compression efficiency. In particular, a scanning order and a prediction scheme are proposed to exploit, directly on the sphere, the statistical dependencies between the pixels. A Graph Fourier Transform is also applied to exploit local dependencies while taking into account the 3D geometry. Experimental results demonstrate that the proposed method provides up to 5.6% bitrate reduction and on average around 2% bitrate reduction over state-of-the-art methods.","PeriodicalId":237809,"journal":{"name":"2019 Picture Coding Symposium (PCS)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Intra-coding of 360-degree images on the sphere\",\"authors\":\"Navid Mahmoudian Bidgoli, Thomas Maugey, A. Roumy\",\"doi\":\"10.1109/PCS48520.2019.8954538\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Omni-directional images are characterized by their high resolution (usually 8K) and therefore require high compression efficiency. Existing methods project the spherical content onto one or multiple planes and process the mapped content with classical 2D video coding algorithms. However, this projection induces sub-optimality. Indeed, after projection, the statistical properties of the pixels are modified, the connectivity between neighboring pixels on the sphere might be lost, and finally, the sampling is not uniform. Therefore, we propose to process uniformly distributed pixels directly on the sphere to achieve high compression efficiency. In particular, a scanning order and a prediction scheme are proposed to exploit, directly on the sphere, the statistical dependencies between the pixels. A Graph Fourier Transform is also applied to exploit local dependencies while taking into account the 3D geometry. Experimental results demonstrate that the proposed method provides up to 5.6% bitrate reduction and on average around 2% bitrate reduction over state-of-the-art methods.\",\"PeriodicalId\":237809,\"journal\":{\"name\":\"2019 Picture Coding Symposium (PCS)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Picture Coding Symposium (PCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PCS48520.2019.8954538\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Picture Coding Symposium (PCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PCS48520.2019.8954538","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

全向图像具有高分辨率(通常为8K)的特点,因此对压缩效率要求很高。现有的方法是将球形内容投影到一个或多个平面上,并用经典的二维视频编码算法对映射的内容进行处理。然而,这种预测会导致次优性。实际上,在投影之后,像素的统计属性会被修改,可能会失去球面上相邻像素之间的连通性,最终导致采样不均匀。因此,我们建议直接在球体上处理均匀分布的像素,以获得较高的压缩效率。特别地,提出了一种扫描顺序和预测方案,直接在球体上利用像素之间的统计依赖性。图傅里叶变换还应用于利用局部依赖关系,同时考虑到三维几何形状。实验结果表明,与现有方法相比,该方法的比特率降低了5.6%,平均降低了2%左右。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Intra-coding of 360-degree images on the sphere
Omni-directional images are characterized by their high resolution (usually 8K) and therefore require high compression efficiency. Existing methods project the spherical content onto one or multiple planes and process the mapped content with classical 2D video coding algorithms. However, this projection induces sub-optimality. Indeed, after projection, the statistical properties of the pixels are modified, the connectivity between neighboring pixels on the sphere might be lost, and finally, the sampling is not uniform. Therefore, we propose to process uniformly distributed pixels directly on the sphere to achieve high compression efficiency. In particular, a scanning order and a prediction scheme are proposed to exploit, directly on the sphere, the statistical dependencies between the pixels. A Graph Fourier Transform is also applied to exploit local dependencies while taking into account the 3D geometry. Experimental results demonstrate that the proposed method provides up to 5.6% bitrate reduction and on average around 2% bitrate reduction over state-of-the-art methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信