一种提高分形图像压缩次数的新方法

T. Zumbakis, J. Valantinas
{"title":"一种提高分形图像压缩次数的新方法","authors":"T. Zumbakis, J. Valantinas","doi":"10.1109/ISPA.2005.195457","DOIUrl":null,"url":null,"abstract":"The paper presents a new approach to improving fractal image compression times. The range blocks and corresponding domain blocks are categorized in accordance with their smoothness level. The searching is carried out between the same (or, neighbouring) smoothness classes for range-domain comparisons which significantly reduces the computational complexity. Theoretical and experimental results show that extremely high compression time savings are achieved for images of size 512/spl times/512.","PeriodicalId":238993,"journal":{"name":"ISPA 2005. Proceedings of the 4th International Symposium on Image and Signal Processing and Analysis, 2005.","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A new approach to improving fractal image compression times\",\"authors\":\"T. Zumbakis, J. Valantinas\",\"doi\":\"10.1109/ISPA.2005.195457\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper presents a new approach to improving fractal image compression times. The range blocks and corresponding domain blocks are categorized in accordance with their smoothness level. The searching is carried out between the same (or, neighbouring) smoothness classes for range-domain comparisons which significantly reduces the computational complexity. Theoretical and experimental results show that extremely high compression time savings are achieved for images of size 512/spl times/512.\",\"PeriodicalId\":238993,\"journal\":{\"name\":\"ISPA 2005. Proceedings of the 4th International Symposium on Image and Signal Processing and Analysis, 2005.\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISPA 2005. Proceedings of the 4th International Symposium on Image and Signal Processing and Analysis, 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISPA.2005.195457\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISPA 2005. Proceedings of the 4th International Symposium on Image and Signal Processing and Analysis, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPA.2005.195457","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

提出了一种提高分形图像压缩次数的新方法。根据范围块和相应的域块的平滑程度进行分类。在相同(或相邻)平滑类之间进行搜索,以进行距离-域比较,从而显着降低了计算复杂度。理论和实验结果表明,对于大小为512/spl /512的图像,该算法可以实现极高的压缩时间节省。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new approach to improving fractal image compression times
The paper presents a new approach to improving fractal image compression times. The range blocks and corresponding domain blocks are categorized in accordance with their smoothness level. The searching is carried out between the same (or, neighbouring) smoothness classes for range-domain comparisons which significantly reduces the computational complexity. Theoretical and experimental results show that extremely high compression time savings are achieved for images of size 512/spl times/512.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信