{"title":"有价块:嵌入式系统WebAssembly字节码的可伸缩高性能编译","authors":"Fabian Scheidl","doi":"10.1109/iCCECE49321.2020.9231154","DOIUrl":null,"url":null,"abstract":"In the field of emerging software architectures, there has been a dramatic push towards flexible and sand-boxed software modules that allow systems to safely execute untrusted code in a guaranteed side-effect free manner. Latest developments have further given rise to portable and statically validatable representations of software in a bytecode format like WebAssembly. In order to ease the segue into the domain of embedded systems, this paper explores the feasibility of a novel and easily retargetable streaming quasi-singlepass on-target-compiler topology with concurrent bytecode validation. For this, a generalized compile-time virtual stack is employed which is logically partitioned into separately emittable blocks (named valent-blocks). This forms the foundation of a corresponding runtime for resource constrained systems that demonstrate the need for predictable, resource-efficient and fast sandboxed execution of hot-loaded software. This paper further benchmarks the resultant performance against current popular competing standalone WebAssembly runtimes.","PeriodicalId":413847,"journal":{"name":"2020 International Conference on Computing, Electronics & Communications Engineering (iCCECE)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Valent-Blocks: Scalable High-Performance Compilation of WebAssembly Bytecode For Embedded Systems\",\"authors\":\"Fabian Scheidl\",\"doi\":\"10.1109/iCCECE49321.2020.9231154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the field of emerging software architectures, there has been a dramatic push towards flexible and sand-boxed software modules that allow systems to safely execute untrusted code in a guaranteed side-effect free manner. Latest developments have further given rise to portable and statically validatable representations of software in a bytecode format like WebAssembly. In order to ease the segue into the domain of embedded systems, this paper explores the feasibility of a novel and easily retargetable streaming quasi-singlepass on-target-compiler topology with concurrent bytecode validation. For this, a generalized compile-time virtual stack is employed which is logically partitioned into separately emittable blocks (named valent-blocks). This forms the foundation of a corresponding runtime for resource constrained systems that demonstrate the need for predictable, resource-efficient and fast sandboxed execution of hot-loaded software. This paper further benchmarks the resultant performance against current popular competing standalone WebAssembly runtimes.\",\"PeriodicalId\":413847,\"journal\":{\"name\":\"2020 International Conference on Computing, Electronics & Communications Engineering (iCCECE)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on Computing, Electronics & Communications Engineering (iCCECE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/iCCECE49321.2020.9231154\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Computing, Electronics & Communications Engineering (iCCECE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iCCECE49321.2020.9231154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Valent-Blocks: Scalable High-Performance Compilation of WebAssembly Bytecode For Embedded Systems
In the field of emerging software architectures, there has been a dramatic push towards flexible and sand-boxed software modules that allow systems to safely execute untrusted code in a guaranteed side-effect free manner. Latest developments have further given rise to portable and statically validatable representations of software in a bytecode format like WebAssembly. In order to ease the segue into the domain of embedded systems, this paper explores the feasibility of a novel and easily retargetable streaming quasi-singlepass on-target-compiler topology with concurrent bytecode validation. For this, a generalized compile-time virtual stack is employed which is logically partitioned into separately emittable blocks (named valent-blocks). This forms the foundation of a corresponding runtime for resource constrained systems that demonstrate the need for predictable, resource-efficient and fast sandboxed execution of hot-loaded software. This paper further benchmarks the resultant performance against current popular competing standalone WebAssembly runtimes.