用于图像检索的注意力感知特征金字塔序数哈希

Xie Sun, Lu Jin, Zechao Li
{"title":"用于图像检索的注意力感知特征金字塔序数哈希","authors":"Xie Sun, Lu Jin, Zechao Li","doi":"10.1145/3338533.3366598","DOIUrl":null,"url":null,"abstract":"Due to the effectiveness of representation learning, deep hashing methods have attracted increasing attention in image retrieval. However, most existing deep hashing methods merely encode the raw information of the last layer for hash learning, which result in the following deficiencies: (1) the useful information from the preceding-layer is not fully exploited; (2) the local salient information of the image is neglected. To this end, we propose a novel deep hashing method, called Attention-Aware Feature Pyramid Ordinal Hashing (AFPH), which explores both the visual structure information and semantic information from different convolutional layers. Specifically, two feature pyramids based on spatial and channel attention are well constructed to capture the local salient structure from multiple scales. Moreover, a multi-scale feature fusion strategy is proposed to aggregate the feature maps from multi-level pyramidal layers to generate the discriminative feature for ranking-based hashing. The experimental results conducted on two widely-used image retrieval datasets demonstrate the superiority of our method.","PeriodicalId":273086,"journal":{"name":"Proceedings of the ACM Multimedia Asia","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Attention-Aware Feature Pyramid Ordinal Hashing for Image Retrieval\",\"authors\":\"Xie Sun, Lu Jin, Zechao Li\",\"doi\":\"10.1145/3338533.3366598\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the effectiveness of representation learning, deep hashing methods have attracted increasing attention in image retrieval. However, most existing deep hashing methods merely encode the raw information of the last layer for hash learning, which result in the following deficiencies: (1) the useful information from the preceding-layer is not fully exploited; (2) the local salient information of the image is neglected. To this end, we propose a novel deep hashing method, called Attention-Aware Feature Pyramid Ordinal Hashing (AFPH), which explores both the visual structure information and semantic information from different convolutional layers. Specifically, two feature pyramids based on spatial and channel attention are well constructed to capture the local salient structure from multiple scales. Moreover, a multi-scale feature fusion strategy is proposed to aggregate the feature maps from multi-level pyramidal layers to generate the discriminative feature for ranking-based hashing. The experimental results conducted on two widely-used image retrieval datasets demonstrate the superiority of our method.\",\"PeriodicalId\":273086,\"journal\":{\"name\":\"Proceedings of the ACM Multimedia Asia\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ACM Multimedia Asia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3338533.3366598\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM Multimedia Asia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3338533.3366598","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

由于表示学习的有效性,深度哈希方法在图像检索中受到越来越多的关注。然而,大多数现有的深度哈希方法仅仅对最后一层的原始信息进行编码进行哈希学习,这导致了以下不足:(1)没有充分利用前一层的有用信息;(2)忽略图像的局部显著信息。为此,我们提出了一种新的深度哈希方法,称为注意力感知特征金字塔序数哈希(AFPH),该方法从不同的卷积层中探索视觉结构信息和语义信息。具体而言,构建了两个基于空间和通道注意的特征金字塔,从多个尺度捕捉局部显著结构。此外,提出了一种多尺度特征融合策略,将多层金字塔层的特征映射聚合在一起,生成判别特征进行排序哈希。在两个广泛使用的图像检索数据集上进行的实验结果表明了该方法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Attention-Aware Feature Pyramid Ordinal Hashing for Image Retrieval
Due to the effectiveness of representation learning, deep hashing methods have attracted increasing attention in image retrieval. However, most existing deep hashing methods merely encode the raw information of the last layer for hash learning, which result in the following deficiencies: (1) the useful information from the preceding-layer is not fully exploited; (2) the local salient information of the image is neglected. To this end, we propose a novel deep hashing method, called Attention-Aware Feature Pyramid Ordinal Hashing (AFPH), which explores both the visual structure information and semantic information from different convolutional layers. Specifically, two feature pyramids based on spatial and channel attention are well constructed to capture the local salient structure from multiple scales. Moreover, a multi-scale feature fusion strategy is proposed to aggregate the feature maps from multi-level pyramidal layers to generate the discriminative feature for ranking-based hashing. The experimental results conducted on two widely-used image retrieval datasets demonstrate the superiority of our method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信