基于Bloom认知水平的问题分类中基于核密度估计的朴素贝叶斯两级特征选择

Catur Supriyanto, N. Yusof, Bowo Nurhadiono, Sukardi
{"title":"基于Bloom认知水平的问题分类中基于核密度估计的朴素贝叶斯两级特征选择","authors":"Catur Supriyanto, N. Yusof, Bowo Nurhadiono, Sukardi","doi":"10.1109/ICITEED.2013.6676245","DOIUrl":null,"url":null,"abstract":"This paper proposes a two-level feature selection to improves Naïve Bayes with kernel density estimation. The performance of the proposed feature selection is evaluated on question item set based on Bloom's cognitive levels. This two-level feature selection contains of filter and wrapper based feature selection. This paper uses chi square and information gain as the filter based feature selection and forward feature selection and backward feature elimination as the wrapper based feature selection. The result shows that the two-level feature selection improves the Naïve Bayes with kernel density estimation. The combination of chi square and backward feature elimination give more optimal quality than the other combination.","PeriodicalId":204082,"journal":{"name":"2013 International Conference on Information Technology and Electrical Engineering (ICITEE)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Two-level feature selection for naive bayes with kernel density estimation in question classification based on Bloom's cognitive levels\",\"authors\":\"Catur Supriyanto, N. Yusof, Bowo Nurhadiono, Sukardi\",\"doi\":\"10.1109/ICITEED.2013.6676245\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a two-level feature selection to improves Naïve Bayes with kernel density estimation. The performance of the proposed feature selection is evaluated on question item set based on Bloom's cognitive levels. This two-level feature selection contains of filter and wrapper based feature selection. This paper uses chi square and information gain as the filter based feature selection and forward feature selection and backward feature elimination as the wrapper based feature selection. The result shows that the two-level feature selection improves the Naïve Bayes with kernel density estimation. The combination of chi square and backward feature elimination give more optimal quality than the other combination.\",\"PeriodicalId\":204082,\"journal\":{\"name\":\"2013 International Conference on Information Technology and Electrical Engineering (ICITEE)\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Conference on Information Technology and Electrical Engineering (ICITEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICITEED.2013.6676245\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Information Technology and Electrical Engineering (ICITEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICITEED.2013.6676245","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文提出了一种两级特征选择方法,利用核密度估计改进Naïve贝叶斯算法。在基于Bloom认知水平的问题项集上对所提出的特征选择的性能进行评估。该两级特征选择包括基于过滤器和包装器的特征选择。本文采用卡方和信息增益作为基于滤波器的特征选择,采用前向特征选择和后向特征消除作为包装器的特征选择。结果表明,两级特征选择改进了Naïve贝叶斯核密度估计。卡方和反向特征消去相结合比其他组合能获得更优的质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Two-level feature selection for naive bayes with kernel density estimation in question classification based on Bloom's cognitive levels
This paper proposes a two-level feature selection to improves Naïve Bayes with kernel density estimation. The performance of the proposed feature selection is evaluated on question item set based on Bloom's cognitive levels. This two-level feature selection contains of filter and wrapper based feature selection. This paper uses chi square and information gain as the filter based feature selection and forward feature selection and backward feature elimination as the wrapper based feature selection. The result shows that the two-level feature selection improves the Naïve Bayes with kernel density estimation. The combination of chi square and backward feature elimination give more optimal quality than the other combination.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信