{"title":"最大加权树匹配问题:一种新的离散入侵杂草优化算法","authors":"M. Zandieh, E. Shokrollahpour, M. Bagher","doi":"10.1504/IJISTA.2017.10005100","DOIUrl":null,"url":null,"abstract":"This paper attempts to solve maximum-weighted tree matching problem (MWTMP). In this type of assignment problem, there are k different tasks to be accomplished and a number of workers/groups. Any worker/group can do any job, with some given profit. The problem is to assign the jobs to workers/groups with the aim of maximising the profit of assignments. This paper presents a novel discrete population-based algorithm, discrete invasive weed optimisation (DIWO) to solve MWTMP. This algorithm is a stochastic numerical algorithm and inspired by weed colonisation trying to find suitable place for growth and reproduction. The performance of the proposed method is examined over benchmarks from the literature and compared to the best algorithm introduced before. Computational results demonstrate the efficiency and robustness of DIWO.","PeriodicalId":420808,"journal":{"name":"Int. J. Intell. Syst. Technol. Appl.","volume":"86 24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Maximum-weighted tree matching problem: a novel discrete invasive weed optimisation algorithm\",\"authors\":\"M. Zandieh, E. Shokrollahpour, M. Bagher\",\"doi\":\"10.1504/IJISTA.2017.10005100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper attempts to solve maximum-weighted tree matching problem (MWTMP). In this type of assignment problem, there are k different tasks to be accomplished and a number of workers/groups. Any worker/group can do any job, with some given profit. The problem is to assign the jobs to workers/groups with the aim of maximising the profit of assignments. This paper presents a novel discrete population-based algorithm, discrete invasive weed optimisation (DIWO) to solve MWTMP. This algorithm is a stochastic numerical algorithm and inspired by weed colonisation trying to find suitable place for growth and reproduction. The performance of the proposed method is examined over benchmarks from the literature and compared to the best algorithm introduced before. Computational results demonstrate the efficiency and robustness of DIWO.\",\"PeriodicalId\":420808,\"journal\":{\"name\":\"Int. J. Intell. Syst. Technol. Appl.\",\"volume\":\"86 24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Intell. Syst. Technol. Appl.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJISTA.2017.10005100\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Intell. Syst. Technol. Appl.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJISTA.2017.10005100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Maximum-weighted tree matching problem: a novel discrete invasive weed optimisation algorithm
This paper attempts to solve maximum-weighted tree matching problem (MWTMP). In this type of assignment problem, there are k different tasks to be accomplished and a number of workers/groups. Any worker/group can do any job, with some given profit. The problem is to assign the jobs to workers/groups with the aim of maximising the profit of assignments. This paper presents a novel discrete population-based algorithm, discrete invasive weed optimisation (DIWO) to solve MWTMP. This algorithm is a stochastic numerical algorithm and inspired by weed colonisation trying to find suitable place for growth and reproduction. The performance of the proposed method is examined over benchmarks from the literature and compared to the best algorithm introduced before. Computational results demonstrate the efficiency and robustness of DIWO.