最大加权树匹配问题:一种新的离散入侵杂草优化算法

M. Zandieh, E. Shokrollahpour, M. Bagher
{"title":"最大加权树匹配问题:一种新的离散入侵杂草优化算法","authors":"M. Zandieh, E. Shokrollahpour, M. Bagher","doi":"10.1504/IJISTA.2017.10005100","DOIUrl":null,"url":null,"abstract":"This paper attempts to solve maximum-weighted tree matching problem (MWTMP). In this type of assignment problem, there are k different tasks to be accomplished and a number of workers/groups. Any worker/group can do any job, with some given profit. The problem is to assign the jobs to workers/groups with the aim of maximising the profit of assignments. This paper presents a novel discrete population-based algorithm, discrete invasive weed optimisation (DIWO) to solve MWTMP. This algorithm is a stochastic numerical algorithm and inspired by weed colonisation trying to find suitable place for growth and reproduction. The performance of the proposed method is examined over benchmarks from the literature and compared to the best algorithm introduced before. Computational results demonstrate the efficiency and robustness of DIWO.","PeriodicalId":420808,"journal":{"name":"Int. J. Intell. Syst. Technol. Appl.","volume":"86 24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Maximum-weighted tree matching problem: a novel discrete invasive weed optimisation algorithm\",\"authors\":\"M. Zandieh, E. Shokrollahpour, M. Bagher\",\"doi\":\"10.1504/IJISTA.2017.10005100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper attempts to solve maximum-weighted tree matching problem (MWTMP). In this type of assignment problem, there are k different tasks to be accomplished and a number of workers/groups. Any worker/group can do any job, with some given profit. The problem is to assign the jobs to workers/groups with the aim of maximising the profit of assignments. This paper presents a novel discrete population-based algorithm, discrete invasive weed optimisation (DIWO) to solve MWTMP. This algorithm is a stochastic numerical algorithm and inspired by weed colonisation trying to find suitable place for growth and reproduction. The performance of the proposed method is examined over benchmarks from the literature and compared to the best algorithm introduced before. Computational results demonstrate the efficiency and robustness of DIWO.\",\"PeriodicalId\":420808,\"journal\":{\"name\":\"Int. J. Intell. Syst. Technol. Appl.\",\"volume\":\"86 24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Intell. Syst. Technol. Appl.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJISTA.2017.10005100\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Intell. Syst. Technol. Appl.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJISTA.2017.10005100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文试图解决最大权树匹配问题(MWTMP)。在这种类型的分配问题中,有k个不同的任务需要完成,并且有许多工人/小组。任何工人/团体都可以做任何工作,并获得一定的利润。问题是将工作分配给工人/团体,目的是使分配的利润最大化。本文提出了一种基于离散种群的离散入侵杂草优化算法(DIWO)。该算法是一种随机数值算法,灵感来自于杂草殖民化,试图找到适合生长和繁殖的地方。所提出的方法的性能从文献中进行了基准测试,并与之前介绍的最佳算法进行了比较。计算结果表明了该方法的有效性和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Maximum-weighted tree matching problem: a novel discrete invasive weed optimisation algorithm
This paper attempts to solve maximum-weighted tree matching problem (MWTMP). In this type of assignment problem, there are k different tasks to be accomplished and a number of workers/groups. Any worker/group can do any job, with some given profit. The problem is to assign the jobs to workers/groups with the aim of maximising the profit of assignments. This paper presents a novel discrete population-based algorithm, discrete invasive weed optimisation (DIWO) to solve MWTMP. This algorithm is a stochastic numerical algorithm and inspired by weed colonisation trying to find suitable place for growth and reproduction. The performance of the proposed method is examined over benchmarks from the literature and compared to the best algorithm introduced before. Computational results demonstrate the efficiency and robustness of DIWO.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信