基于单阶段人脸检测器的平滑注意网络

Lei Shi, Xiang Xu, I. Kakadiaris
{"title":"基于单阶段人脸检测器的平滑注意网络","authors":"Lei Shi, Xiang Xu, I. Kakadiaris","doi":"10.1109/ICB45273.2019.8987285","DOIUrl":null,"url":null,"abstract":"Recently, significant effort has been devoted to exploring the role of feature fusion and enriching contextual information on detecting multi-scale faces. However, simply integrating features of different levels could lead to introducing significant noise. Moreover, recently proposed approaches of enriching contextual information are not efficient or ignore the gridding artifacts produced by dilated convolution. To tackle these issues, we developed a smoothed attention network (dubbed SANet), which introduces an Attention-guided Feature Fusion Module (AFFM) and a Smoothed Context Enhancement Module (SCEM). In particular, the AFFM applies an attention module to high-level semantic features and fuses attention-focused features with low-level semantic features to reduce the noise of the fused feature map. The SCEM stacks dilated convolution and convolution layers alternately to re-learn the relationship among completely separate sets of units produced by dilated convolution to maintain consistency of local information. The SANet achieves promising results on the WIDER FACE validation and testing datasets and is state-of-the-art on the UFDD dataset.","PeriodicalId":430846,"journal":{"name":"2019 International Conference on Biometrics (ICB)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"SANet: Smoothed Attention Network for Single Stage Face Detector\",\"authors\":\"Lei Shi, Xiang Xu, I. Kakadiaris\",\"doi\":\"10.1109/ICB45273.2019.8987285\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, significant effort has been devoted to exploring the role of feature fusion and enriching contextual information on detecting multi-scale faces. However, simply integrating features of different levels could lead to introducing significant noise. Moreover, recently proposed approaches of enriching contextual information are not efficient or ignore the gridding artifacts produced by dilated convolution. To tackle these issues, we developed a smoothed attention network (dubbed SANet), which introduces an Attention-guided Feature Fusion Module (AFFM) and a Smoothed Context Enhancement Module (SCEM). In particular, the AFFM applies an attention module to high-level semantic features and fuses attention-focused features with low-level semantic features to reduce the noise of the fused feature map. The SCEM stacks dilated convolution and convolution layers alternately to re-learn the relationship among completely separate sets of units produced by dilated convolution to maintain consistency of local information. The SANet achieves promising results on the WIDER FACE validation and testing datasets and is state-of-the-art on the UFDD dataset.\",\"PeriodicalId\":430846,\"journal\":{\"name\":\"2019 International Conference on Biometrics (ICB)\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Biometrics (ICB)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICB45273.2019.8987285\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Biometrics (ICB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICB45273.2019.8987285","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

近年来,人们致力于探索特征融合和丰富上下文信息在多尺度人脸检测中的作用。然而,简单地整合不同级别的特征可能会导致引入显著的噪声。此外,最近提出的丰富上下文信息的方法效率不高或忽略了扩张卷积产生的网格伪影。为了解决这些问题,我们开发了一个平滑注意力网络(称为SANet),其中引入了一个注意引导特征融合模块(AFFM)和一个平滑上下文增强模块(SCEM)。其中,AFFM对高级语义特征应用了注意模块,将注意力集中的特征与低级语义特征进行融合,降低融合特征映射的噪声。SCEM将扩展卷积和卷积层交替堆叠,重新学习扩展卷积产生的完全独立的单元集之间的关系,以保持局部信息的一致性。SANet在wide FACE验证和测试数据集上取得了可喜的结果,在UFDD数据集上也是最先进的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SANet: Smoothed Attention Network for Single Stage Face Detector
Recently, significant effort has been devoted to exploring the role of feature fusion and enriching contextual information on detecting multi-scale faces. However, simply integrating features of different levels could lead to introducing significant noise. Moreover, recently proposed approaches of enriching contextual information are not efficient or ignore the gridding artifacts produced by dilated convolution. To tackle these issues, we developed a smoothed attention network (dubbed SANet), which introduces an Attention-guided Feature Fusion Module (AFFM) and a Smoothed Context Enhancement Module (SCEM). In particular, the AFFM applies an attention module to high-level semantic features and fuses attention-focused features with low-level semantic features to reduce the noise of the fused feature map. The SCEM stacks dilated convolution and convolution layers alternately to re-learn the relationship among completely separate sets of units produced by dilated convolution to maintain consistency of local information. The SANet achieves promising results on the WIDER FACE validation and testing datasets and is state-of-the-art on the UFDD dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信