{"title":"角域上Fatou集合的周期分量","authors":"Nirmal Gurung, A. Singh","doi":"10.3126/jnms.v5i1.47373","DOIUrl":null,"url":null,"abstract":"Here we discuss, for a given integer, the existence of transcendental entire function such that its number of periodic Fatou components lie in angular regions and their periodicity are related to the integer.","PeriodicalId":401623,"journal":{"name":"Journal of Nepal Mathematical Society","volume":"95 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Periodic Components of the Fatou Set in Angular Region\",\"authors\":\"Nirmal Gurung, A. Singh\",\"doi\":\"10.3126/jnms.v5i1.47373\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Here we discuss, for a given integer, the existence of transcendental entire function such that its number of periodic Fatou components lie in angular regions and their periodicity are related to the integer.\",\"PeriodicalId\":401623,\"journal\":{\"name\":\"Journal of Nepal Mathematical Society\",\"volume\":\"95 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nepal Mathematical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3126/jnms.v5i1.47373\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nepal Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3126/jnms.v5i1.47373","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Periodic Components of the Fatou Set in Angular Region
Here we discuss, for a given integer, the existence of transcendental entire function such that its number of periodic Fatou components lie in angular regions and their periodicity are related to the integer.