无线传感器网络中基于rss定位的低复杂度最小二乘估计

A. I. Alhasant, B. Sharif, C. Tsimenidis, J. Neasham
{"title":"无线传感器网络中基于rss定位的低复杂度最小二乘估计","authors":"A. I. Alhasant, B. Sharif, C. Tsimenidis, J. Neasham","doi":"10.1109/ICCITECHNOL.2012.6285818","DOIUrl":null,"url":null,"abstract":"This paper presents an efficient Received Signal Strength RSS-based localization approach utilizing a Tree Search Algorithm (TSA). In comparison to the existing exhaustive search algorithms, e.g. Least Square Estimators (LSE) and Error Controlling localization (Ecolocation), the proposed approach achieves considerable reduction in computational complexity and storage requirements. The effectiveness of the TSA is evaluated through simulation and real experiments. The presented results show that the performance of the new approach closely achieves LSE and performs better than Ecolocation algorithms. Moreover, at a comparable system complexities, TSA outperforms the simplistic Proximity and Centroid localization algorithms.","PeriodicalId":435718,"journal":{"name":"2012 International Conference on Communications and Information Technology (ICCIT)","volume":"90 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Low complexity least-square estimator for RSS-based localization in Wireless Sensor Networks\",\"authors\":\"A. I. Alhasant, B. Sharif, C. Tsimenidis, J. Neasham\",\"doi\":\"10.1109/ICCITECHNOL.2012.6285818\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an efficient Received Signal Strength RSS-based localization approach utilizing a Tree Search Algorithm (TSA). In comparison to the existing exhaustive search algorithms, e.g. Least Square Estimators (LSE) and Error Controlling localization (Ecolocation), the proposed approach achieves considerable reduction in computational complexity and storage requirements. The effectiveness of the TSA is evaluated through simulation and real experiments. The presented results show that the performance of the new approach closely achieves LSE and performs better than Ecolocation algorithms. Moreover, at a comparable system complexities, TSA outperforms the simplistic Proximity and Centroid localization algorithms.\",\"PeriodicalId\":435718,\"journal\":{\"name\":\"2012 International Conference on Communications and Information Technology (ICCIT)\",\"volume\":\"90 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 International Conference on Communications and Information Technology (ICCIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCITECHNOL.2012.6285818\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Communications and Information Technology (ICCIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCITECHNOL.2012.6285818","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文利用树搜索算法(TSA)提出了一种有效的基于接收信号强度rss的定位方法。与现有的穷举搜索算法(如Least Square Estimators (LSE)和Error control localization (Ecolocation))相比,该方法大大降低了计算复杂度和存储需求。通过仿真和实际实验对TSA的有效性进行了评价。实验结果表明,该方法的性能接近LSE,且优于生态定位算法。此外,在相当的系统复杂性下,TSA优于简单的接近和质心定位算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Low complexity least-square estimator for RSS-based localization in Wireless Sensor Networks
This paper presents an efficient Received Signal Strength RSS-based localization approach utilizing a Tree Search Algorithm (TSA). In comparison to the existing exhaustive search algorithms, e.g. Least Square Estimators (LSE) and Error Controlling localization (Ecolocation), the proposed approach achieves considerable reduction in computational complexity and storage requirements. The effectiveness of the TSA is evaluated through simulation and real experiments. The presented results show that the performance of the new approach closely achieves LSE and performs better than Ecolocation algorithms. Moreover, at a comparable system complexities, TSA outperforms the simplistic Proximity and Centroid localization algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信