一种支持多最小项的异步周期顺序模式挖掘算法

Xiangzhan Yu, Haining Yu
{"title":"一种支持多最小项的异步周期顺序模式挖掘算法","authors":"Xiangzhan Yu, Haining Yu","doi":"10.1109/3PGCIC.2014.76","DOIUrl":null,"url":null,"abstract":"Original sequential pattern mining model only considers occurrence frequentness of sequential patterns, disregards their occurrence periodicity. We propose the asynchronous periodic sequential pattern mining model to discover the sequential patterns which are not only occurring frequently, but also appearing periodically. For this mining model, we propose a pattern-growth mining algorithm to mine asynchronous periodic sequential patterns with multiple minimum item supports. This algorithm employs a dividing and rule method to mine asynchronous periodic sequential pattern recursively and depth first. Experimental results show the efficiency and stability of the algorithm.","PeriodicalId":395610,"journal":{"name":"2014 Ninth International Conference on P2P, Parallel, Grid, Cloud and Internet Computing","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An Asynchronous Periodic Sequential Patterns Mining Algorithm with Multiple Minimum Item Supports\",\"authors\":\"Xiangzhan Yu, Haining Yu\",\"doi\":\"10.1109/3PGCIC.2014.76\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Original sequential pattern mining model only considers occurrence frequentness of sequential patterns, disregards their occurrence periodicity. We propose the asynchronous periodic sequential pattern mining model to discover the sequential patterns which are not only occurring frequently, but also appearing periodically. For this mining model, we propose a pattern-growth mining algorithm to mine asynchronous periodic sequential patterns with multiple minimum item supports. This algorithm employs a dividing and rule method to mine asynchronous periodic sequential pattern recursively and depth first. Experimental results show the efficiency and stability of the algorithm.\",\"PeriodicalId\":395610,\"journal\":{\"name\":\"2014 Ninth International Conference on P2P, Parallel, Grid, Cloud and Internet Computing\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 Ninth International Conference on P2P, Parallel, Grid, Cloud and Internet Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/3PGCIC.2014.76\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Ninth International Conference on P2P, Parallel, Grid, Cloud and Internet Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3PGCIC.2014.76","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

原始的序列模式挖掘模型只考虑序列模式的出现频率,而忽略了序列模式的出现周期性。提出了异步周期性序列模式挖掘模型,用于发现频繁出现且周期性出现的序列模式。针对该挖掘模型,我们提出了一种模式增长挖掘算法来挖掘具有多个最小项支持的异步周期序列模式。该算法采用分段规则法对异步周期序列模式进行递归深度优先挖掘。实验结果表明了该算法的有效性和稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Asynchronous Periodic Sequential Patterns Mining Algorithm with Multiple Minimum Item Supports
Original sequential pattern mining model only considers occurrence frequentness of sequential patterns, disregards their occurrence periodicity. We propose the asynchronous periodic sequential pattern mining model to discover the sequential patterns which are not only occurring frequently, but also appearing periodically. For this mining model, we propose a pattern-growth mining algorithm to mine asynchronous periodic sequential patterns with multiple minimum item supports. This algorithm employs a dividing and rule method to mine asynchronous periodic sequential pattern recursively and depth first. Experimental results show the efficiency and stability of the algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信