MQuery:基于移动上下文语义索引的快速图形查询

Yuan Zhang, Ning Zhang, Jie Tang, Jinghai Rao, Wenbin Tang
{"title":"MQuery:基于移动上下文语义索引的快速图形查询","authors":"Yuan Zhang, Ning Zhang, Jie Tang, Jinghai Rao, Wenbin Tang","doi":"10.1109/WI-IAT.2010.137","DOIUrl":null,"url":null,"abstract":"Mobile is becoming a ubiquitous platform for context-aware intelligent computing. One fundamental but usually ignored issue is how to efficiently manage (e.g., index and query) the mobile context data. To this end, we present a unified framework and have developed a toolkit, referred to as MQuery. More specifically, the mobile context data is represented in the standard RDF (Resource Description Framework) format. We propose a compressed-index method which takes less than 50% of the memory cost (of the traditional method) to index the context data. Four query interfaces have been developed for efficiently querying the context data including: instance query, neighbor query, shortest path query, and connection subgraph query. Experimental results on two real datasets demonstrate the efficiency of MQuery.","PeriodicalId":340211,"journal":{"name":"2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"MQuery: Fast Graph Query via Semantic Indexing for Mobile Context\",\"authors\":\"Yuan Zhang, Ning Zhang, Jie Tang, Jinghai Rao, Wenbin Tang\",\"doi\":\"10.1109/WI-IAT.2010.137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mobile is becoming a ubiquitous platform for context-aware intelligent computing. One fundamental but usually ignored issue is how to efficiently manage (e.g., index and query) the mobile context data. To this end, we present a unified framework and have developed a toolkit, referred to as MQuery. More specifically, the mobile context data is represented in the standard RDF (Resource Description Framework) format. We propose a compressed-index method which takes less than 50% of the memory cost (of the traditional method) to index the context data. Four query interfaces have been developed for efficiently querying the context data including: instance query, neighbor query, shortest path query, and connection subgraph query. Experimental results on two real datasets demonstrate the efficiency of MQuery.\",\"PeriodicalId\":340211,\"journal\":{\"name\":\"2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WI-IAT.2010.137\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WI-IAT.2010.137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

移动正在成为一个无处不在的环境感知智能计算平台。一个基本但经常被忽视的问题是如何有效地管理(例如,索引和查询)移动上下文数据。为此,我们提出了一个统一的框架,并开发了一个工具包,称为MQuery。更具体地说,移动上下文数据用标准RDF(资源描述框架)格式表示。本文提出了一种压缩索引方法,该方法对上下文数据进行索引所需的内存开销小于传统方法的50%。为了有效地查询上下文数据,开发了四个查询接口:实例查询、邻居查询、最短路径查询和连接子图查询。在两个真实数据集上的实验结果验证了MQuery的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MQuery: Fast Graph Query via Semantic Indexing for Mobile Context
Mobile is becoming a ubiquitous platform for context-aware intelligent computing. One fundamental but usually ignored issue is how to efficiently manage (e.g., index and query) the mobile context data. To this end, we present a unified framework and have developed a toolkit, referred to as MQuery. More specifically, the mobile context data is represented in the standard RDF (Resource Description Framework) format. We propose a compressed-index method which takes less than 50% of the memory cost (of the traditional method) to index the context data. Four query interfaces have been developed for efficiently querying the context data including: instance query, neighbor query, shortest path query, and connection subgraph query. Experimental results on two real datasets demonstrate the efficiency of MQuery.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信