{"title":"F3N:用于目标检测的全特征融合网络","authors":"Gang Wang, Tang Kai, Kazushige Ouchi","doi":"10.1145/3446132.3446152","DOIUrl":null,"url":null,"abstract":"This paper is mainly aimed at proposing a powerful feature fusion method for object detection. An exceptionally significant accuracy improvement is achieved by augmenting all multi-scale features by adding a finite amount of computation. Hence, we created our detector based on a fast detector on SSD [1] and called it Full Feature Fusion Network (F3N). Using several Feature Fusion modules, we fused low-level and high-level features by parallel low-high level sub-network with repeated information exchange across multi-scale features. We fused all the multi-scale features using concatenate and interpolate methods within several feature fusion modules. F3N achieves the new state of the art result for one-stage object detection. F3N with 512x512 input achieves 82.5% mAP (mean Average Precision) and 320x320 input yields 80.3% on the VOC2007 test, with 512x512 input achieving 81.1% and 320x320 input yielding 77.3% on the VOC2012 test. In MS COCO data set, 512x512 input obtains 33.9% and 320x320 input yields 30.4%. The accuracies are significantly enhanced compared to the current mainstream approaches such as SSD [1], DSSD [8], FPN [11], YOLO [6].","PeriodicalId":125388,"journal":{"name":"Proceedings of the 2020 3rd International Conference on Algorithms, Computing and Artificial Intelligence","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"F3N: Full Feature Fusion Network for Object Detection\",\"authors\":\"Gang Wang, Tang Kai, Kazushige Ouchi\",\"doi\":\"10.1145/3446132.3446152\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is mainly aimed at proposing a powerful feature fusion method for object detection. An exceptionally significant accuracy improvement is achieved by augmenting all multi-scale features by adding a finite amount of computation. Hence, we created our detector based on a fast detector on SSD [1] and called it Full Feature Fusion Network (F3N). Using several Feature Fusion modules, we fused low-level and high-level features by parallel low-high level sub-network with repeated information exchange across multi-scale features. We fused all the multi-scale features using concatenate and interpolate methods within several feature fusion modules. F3N achieves the new state of the art result for one-stage object detection. F3N with 512x512 input achieves 82.5% mAP (mean Average Precision) and 320x320 input yields 80.3% on the VOC2007 test, with 512x512 input achieving 81.1% and 320x320 input yielding 77.3% on the VOC2012 test. In MS COCO data set, 512x512 input obtains 33.9% and 320x320 input yields 30.4%. The accuracies are significantly enhanced compared to the current mainstream approaches such as SSD [1], DSSD [8], FPN [11], YOLO [6].\",\"PeriodicalId\":125388,\"journal\":{\"name\":\"Proceedings of the 2020 3rd International Conference on Algorithms, Computing and Artificial Intelligence\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2020 3rd International Conference on Algorithms, Computing and Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3446132.3446152\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 3rd International Conference on Algorithms, Computing and Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3446132.3446152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
F3N: Full Feature Fusion Network for Object Detection
This paper is mainly aimed at proposing a powerful feature fusion method for object detection. An exceptionally significant accuracy improvement is achieved by augmenting all multi-scale features by adding a finite amount of computation. Hence, we created our detector based on a fast detector on SSD [1] and called it Full Feature Fusion Network (F3N). Using several Feature Fusion modules, we fused low-level and high-level features by parallel low-high level sub-network with repeated information exchange across multi-scale features. We fused all the multi-scale features using concatenate and interpolate methods within several feature fusion modules. F3N achieves the new state of the art result for one-stage object detection. F3N with 512x512 input achieves 82.5% mAP (mean Average Precision) and 320x320 input yields 80.3% on the VOC2007 test, with 512x512 input achieving 81.1% and 320x320 input yielding 77.3% on the VOC2012 test. In MS COCO data set, 512x512 input obtains 33.9% and 320x320 input yields 30.4%. The accuracies are significantly enhanced compared to the current mainstream approaches such as SSD [1], DSSD [8], FPN [11], YOLO [6].