利用非线性动力学稀疏识别进行电网参数估计

Asif Hamid, Danish Rafiq, S. A. Nahvi, M. A. Bazaz
{"title":"利用非线性动力学稀疏识别进行电网参数估计","authors":"Asif Hamid, Danish Rafiq, S. A. Nahvi, M. A. Bazaz","doi":"10.1109/ICICCSP53532.2022.9862464","DOIUrl":null,"url":null,"abstract":"The recent discovery of nonlinear system identification via the Sparse Identification of Nonlinear Dynamics (SINDy) method has enjoyed a lot of success across many engineering applications. Due to innovations in sparse regression and compressed sensing, this technique enables tractable identification of both the structure and parameters of a nonlinear dynamical system from data. In the present work, we show the application of SINDy for estimating power-grid parameters. In particular, we demonstrate how SINDy can be used to extract the underlying swing equations from time-series data and thus estimate the critical power-system parameters like rotor inertia and damping coefficients with high degree of accuracy. We demonstrate the results on the Ring-Grid and the IEEE 39-Bus test system.","PeriodicalId":326163,"journal":{"name":"2022 International Conference on Intelligent Controller and Computing for Smart Power (ICICCSP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Power Grid parameter estimation using Sparse Identification of Nonlinear Dynamics\",\"authors\":\"Asif Hamid, Danish Rafiq, S. A. Nahvi, M. A. Bazaz\",\"doi\":\"10.1109/ICICCSP53532.2022.9862464\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The recent discovery of nonlinear system identification via the Sparse Identification of Nonlinear Dynamics (SINDy) method has enjoyed a lot of success across many engineering applications. Due to innovations in sparse regression and compressed sensing, this technique enables tractable identification of both the structure and parameters of a nonlinear dynamical system from data. In the present work, we show the application of SINDy for estimating power-grid parameters. In particular, we demonstrate how SINDy can be used to extract the underlying swing equations from time-series data and thus estimate the critical power-system parameters like rotor inertia and damping coefficients with high degree of accuracy. We demonstrate the results on the Ring-Grid and the IEEE 39-Bus test system.\",\"PeriodicalId\":326163,\"journal\":{\"name\":\"2022 International Conference on Intelligent Controller and Computing for Smart Power (ICICCSP)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Intelligent Controller and Computing for Smart Power (ICICCSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICCSP53532.2022.9862464\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Intelligent Controller and Computing for Smart Power (ICICCSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICCSP53532.2022.9862464","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

最近,通过非线性动力学稀疏识别(SINDy)方法进行非线性系统识别的发现在许多工程应用中取得了巨大成功。由于稀疏回归和压缩传感方面的创新,这项技术能够从数据中识别非线性动力系统的结构和参数。在本研究中,我们展示了 SINDy 在电网参数估计中的应用。特别是,我们展示了如何利用 SINDy 从时间序列数据中提取基本摆动方程,从而高精度地估计转子惯性和阻尼系数等关键电力系统参数。我们在环形电网和 IEEE 39 总线测试系统上演示了结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Power Grid parameter estimation using Sparse Identification of Nonlinear Dynamics
The recent discovery of nonlinear system identification via the Sparse Identification of Nonlinear Dynamics (SINDy) method has enjoyed a lot of success across many engineering applications. Due to innovations in sparse regression and compressed sensing, this technique enables tractable identification of both the structure and parameters of a nonlinear dynamical system from data. In the present work, we show the application of SINDy for estimating power-grid parameters. In particular, we demonstrate how SINDy can be used to extract the underlying swing equations from time-series data and thus estimate the critical power-system parameters like rotor inertia and damping coefficients with high degree of accuracy. We demonstrate the results on the Ring-Grid and the IEEE 39-Bus test system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信