深海水对大肠杆菌和金黄色葡萄球菌的抑菌性能

Govinraj Ravi Chandran, Daniel Joe Dailin, Nor Hasmaliana Abdul Manas, Hesham Ali El-Ensashy, Mustafa Man, Zehra Edis, W. Fatriasari, N. I. Wan Azelee
{"title":"深海水对大肠杆菌和金黄色葡萄球菌的抑菌性能","authors":"Govinraj Ravi Chandran, Daniel Joe Dailin, Nor Hasmaliana Abdul Manas, Hesham Ali El-Ensashy, Mustafa Man, Zehra Edis, W. Fatriasari, N. I. Wan Azelee","doi":"10.11113/bioprocessing.v2n1.22","DOIUrl":null,"url":null,"abstract":"\n \n \n \nWith the quick commercial expansion, demand for cosmetics made with natural materials has been rising steadily over time. A potential replacement that is substantially safer than the chemical ingredients would be a deep-sea water (DSW) based cosmetic that mostly consists of organic and biomaterial elements. This research attempts to demonstrate that DSW can be a good alternative to chemical cosmetics by examining its antibacterial capabilities. The antibacterial properties of DSW were ascertained using the well diffusion method and the Mueller Hinton Agar plate technique. Escherichia coli and Staphylococcus aureus, two of the most prevalent bacteria on human skin, were used in the antimicrobial tests. The hollow zones that were produced as a result of the inhibition zones were assessed to demonstrate their potential as a replacement for numerous chemical-based products. This study will serve as a foundation for the widespread use of DSW, which promises to be a safe and sustainable ingredient, in future cosmetics. \n \n \n \n","PeriodicalId":244855,"journal":{"name":"Journal of Bioprocessing and Biomass Technology","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Antimicrobial Properties of Deep-Sea Water towards Escherichia coli and Staphylococcus aureus\",\"authors\":\"Govinraj Ravi Chandran, Daniel Joe Dailin, Nor Hasmaliana Abdul Manas, Hesham Ali El-Ensashy, Mustafa Man, Zehra Edis, W. Fatriasari, N. I. Wan Azelee\",\"doi\":\"10.11113/bioprocessing.v2n1.22\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n \\n \\n \\nWith the quick commercial expansion, demand for cosmetics made with natural materials has been rising steadily over time. A potential replacement that is substantially safer than the chemical ingredients would be a deep-sea water (DSW) based cosmetic that mostly consists of organic and biomaterial elements. This research attempts to demonstrate that DSW can be a good alternative to chemical cosmetics by examining its antibacterial capabilities. The antibacterial properties of DSW were ascertained using the well diffusion method and the Mueller Hinton Agar plate technique. Escherichia coli and Staphylococcus aureus, two of the most prevalent bacteria on human skin, were used in the antimicrobial tests. The hollow zones that were produced as a result of the inhibition zones were assessed to demonstrate their potential as a replacement for numerous chemical-based products. This study will serve as a foundation for the widespread use of DSW, which promises to be a safe and sustainable ingredient, in future cosmetics. \\n \\n \\n \\n\",\"PeriodicalId\":244855,\"journal\":{\"name\":\"Journal of Bioprocessing and Biomass Technology\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Bioprocessing and Biomass Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11113/bioprocessing.v2n1.22\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bioprocessing and Biomass Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11113/bioprocessing.v2n1.22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着商业的快速扩张,对天然原料化妆品的需求一直在稳步上升。一种比化学成分安全得多的潜在替代品是深海水(DSW)化妆品,它主要由有机和生物材料元素组成。本研究试图通过检测DSW的抗菌能力来证明DSW可以成为化学化妆品的良好替代品。采用孔扩散法和Mueller Hinton琼脂平板技术对DSW的抑菌性能进行了研究。人类皮肤上最常见的两种细菌——大肠杆菌和金黄色葡萄球菌被用于抗菌试验。对抑制区产生的空心区进行了评估,以证明它们作为许多化学基产品的替代品的潜力。该研究将为DSW在未来化妆品中的广泛应用奠定基础,DSW有望成为一种安全、可持续的成分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Antimicrobial Properties of Deep-Sea Water towards Escherichia coli and Staphylococcus aureus
With the quick commercial expansion, demand for cosmetics made with natural materials has been rising steadily over time. A potential replacement that is substantially safer than the chemical ingredients would be a deep-sea water (DSW) based cosmetic that mostly consists of organic and biomaterial elements. This research attempts to demonstrate that DSW can be a good alternative to chemical cosmetics by examining its antibacterial capabilities. The antibacterial properties of DSW were ascertained using the well diffusion method and the Mueller Hinton Agar plate technique. Escherichia coli and Staphylococcus aureus, two of the most prevalent bacteria on human skin, were used in the antimicrobial tests. The hollow zones that were produced as a result of the inhibition zones were assessed to demonstrate their potential as a replacement for numerous chemical-based products. This study will serve as a foundation for the widespread use of DSW, which promises to be a safe and sustainable ingredient, in future cosmetics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信