A. Guerra, J. Belinha, C. Salgado, Ferando Jorge Monteiro, R. N. Jorge
{"title":"压缩载荷影响内皮细胞迁移:一项数值研究","authors":"A. Guerra, J. Belinha, C. Salgado, Ferando Jorge Monteiro, R. N. Jorge","doi":"10.1109/ENBENG58165.2023.10175357","DOIUrl":null,"url":null,"abstract":"This study aims to investigate the impact of compressive loading on endothelial cell migration pattern in angiogenesis using a meshless discretization technique, combined with a reaction-diffusion formulation. In silico models are highly valuable for understanding the dynamics of biological systems, and numerical models allow for testing different laboratory protocols and deducing which ones produce the best outcomes. In the proposed model, angiogenesis was simulated in response to a reaction-diffusion equation for vascular endothelial growth factor (VEGF) in a 5×5 mm2 square domain and using the Radial Point Interpolation Method (RPIM). The compressive loading was applied as a hydrostatic pressure of around 0.0067 MPa, in a specific zone in the domain to simulate the domain stress-strain interactions. The effect of compressive loading on angiogenesis sprouting patterns is analysed, and the results show that compression load affects the VEGF diffusion gradient and increases the VEGF concentration in the region where the compression was applied, causing the capillary to move away from the VEGF release region. Overall, this study sheds light on the role of mechanical stimuli in angiogenesis and provides a basis for further research in this area.","PeriodicalId":125330,"journal":{"name":"2023 IEEE 7th Portuguese Meeting on Bioengineering (ENBENG)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Compressive loading affects endothelial cell migration: a numerical study\",\"authors\":\"A. Guerra, J. Belinha, C. Salgado, Ferando Jorge Monteiro, R. N. Jorge\",\"doi\":\"10.1109/ENBENG58165.2023.10175357\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study aims to investigate the impact of compressive loading on endothelial cell migration pattern in angiogenesis using a meshless discretization technique, combined with a reaction-diffusion formulation. In silico models are highly valuable for understanding the dynamics of biological systems, and numerical models allow for testing different laboratory protocols and deducing which ones produce the best outcomes. In the proposed model, angiogenesis was simulated in response to a reaction-diffusion equation for vascular endothelial growth factor (VEGF) in a 5×5 mm2 square domain and using the Radial Point Interpolation Method (RPIM). The compressive loading was applied as a hydrostatic pressure of around 0.0067 MPa, in a specific zone in the domain to simulate the domain stress-strain interactions. The effect of compressive loading on angiogenesis sprouting patterns is analysed, and the results show that compression load affects the VEGF diffusion gradient and increases the VEGF concentration in the region where the compression was applied, causing the capillary to move away from the VEGF release region. Overall, this study sheds light on the role of mechanical stimuli in angiogenesis and provides a basis for further research in this area.\",\"PeriodicalId\":125330,\"journal\":{\"name\":\"2023 IEEE 7th Portuguese Meeting on Bioengineering (ENBENG)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE 7th Portuguese Meeting on Bioengineering (ENBENG)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ENBENG58165.2023.10175357\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 7th Portuguese Meeting on Bioengineering (ENBENG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ENBENG58165.2023.10175357","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Compressive loading affects endothelial cell migration: a numerical study
This study aims to investigate the impact of compressive loading on endothelial cell migration pattern in angiogenesis using a meshless discretization technique, combined with a reaction-diffusion formulation. In silico models are highly valuable for understanding the dynamics of biological systems, and numerical models allow for testing different laboratory protocols and deducing which ones produce the best outcomes. In the proposed model, angiogenesis was simulated in response to a reaction-diffusion equation for vascular endothelial growth factor (VEGF) in a 5×5 mm2 square domain and using the Radial Point Interpolation Method (RPIM). The compressive loading was applied as a hydrostatic pressure of around 0.0067 MPa, in a specific zone in the domain to simulate the domain stress-strain interactions. The effect of compressive loading on angiogenesis sprouting patterns is analysed, and the results show that compression load affects the VEGF diffusion gradient and increases the VEGF concentration in the region where the compression was applied, causing the capillary to move away from the VEGF release region. Overall, this study sheds light on the role of mechanical stimuli in angiogenesis and provides a basis for further research in this area.