软生物特征认证:基于聚类的肤色分类系统

Abdou-Aziz Sobabe, Tahirou Djara, Blaise Blochaou, A. Vianou
{"title":"软生物特征认证:基于聚类的肤色分类系统","authors":"Abdou-Aziz Sobabe, Tahirou Djara, Blaise Blochaou, A. Vianou","doi":"10.4018/jitr.298620","DOIUrl":null,"url":null,"abstract":"This manuscript presents the design of a new approach of human skin color authentication. Skin color is one of the most popular soft biometric modalities. Since a soft biometric modality alone cannot reliably authenticate an individual, this new system is designed to combine skin color results with other pure biometric modalities to increase recognition performance. In the classification process, we first perform facial skin detection by segmentation using the thresholding method in the HSV color space. Then, the K-means algorithm of the clustering method is used to determine the dominant colors on the skin pixels in the RGB model. Variations according to the R, G and B components are recorded in a reference model to enable an individual’s identity to be predicted on the basis of 30 clusters. Experimental results are promising and give a false acceptance rate (FAR) of 29.47% and a false rejection rate (FRR) of 70.53%.","PeriodicalId":296080,"journal":{"name":"J. Inf. Technol. Res.","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Soft Biometrics Authentication: A Cluster-Based Skin Color Classification System\",\"authors\":\"Abdou-Aziz Sobabe, Tahirou Djara, Blaise Blochaou, A. Vianou\",\"doi\":\"10.4018/jitr.298620\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This manuscript presents the design of a new approach of human skin color authentication. Skin color is one of the most popular soft biometric modalities. Since a soft biometric modality alone cannot reliably authenticate an individual, this new system is designed to combine skin color results with other pure biometric modalities to increase recognition performance. In the classification process, we first perform facial skin detection by segmentation using the thresholding method in the HSV color space. Then, the K-means algorithm of the clustering method is used to determine the dominant colors on the skin pixels in the RGB model. Variations according to the R, G and B components are recorded in a reference model to enable an individual’s identity to be predicted on the basis of 30 clusters. Experimental results are promising and give a false acceptance rate (FAR) of 29.47% and a false rejection rate (FRR) of 70.53%.\",\"PeriodicalId\":296080,\"journal\":{\"name\":\"J. Inf. Technol. Res.\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Inf. Technol. Res.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/jitr.298620\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Inf. Technol. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/jitr.298620","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种新的人体肤色认证方法的设计。肤色是最流行的软生物识别模式之一。由于单靠软生物识别模式无法可靠地验证个人身份,因此该新系统将肤色结果与其他纯生物识别模式结合起来,以提高识别性能。在分类过程中,我们首先在HSV颜色空间中使用阈值分割方法进行面部皮肤检测。然后,使用聚类方法中的K-means算法确定RGB模型中皮肤像素上的主色。根据R, G和B组成部分的变化被记录在参考模型中,以便在30个集群的基础上预测个体的身份。实验结果表明,该方法的误接受率(FAR)为29.47%,误拒率(FRR)为70.53%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Soft Biometrics Authentication: A Cluster-Based Skin Color Classification System
This manuscript presents the design of a new approach of human skin color authentication. Skin color is one of the most popular soft biometric modalities. Since a soft biometric modality alone cannot reliably authenticate an individual, this new system is designed to combine skin color results with other pure biometric modalities to increase recognition performance. In the classification process, we first perform facial skin detection by segmentation using the thresholding method in the HSV color space. Then, the K-means algorithm of the clustering method is used to determine the dominant colors on the skin pixels in the RGB model. Variations according to the R, G and B components are recorded in a reference model to enable an individual’s identity to be predicted on the basis of 30 clusters. Experimental results are promising and give a false acceptance rate (FAR) of 29.47% and a false rejection rate (FRR) of 70.53%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信