基于隐马尔可夫模型的ACS-TSP局部信息素衰减参数的动态自适应

Safae Bouzbita, A. El Afia, R. Faizi, Mustapha Zbakh
{"title":"基于隐马尔可夫模型的ACS-TSP局部信息素衰减参数的动态自适应","authors":"Safae Bouzbita, A. El Afia, R. Faizi, Mustapha Zbakh","doi":"10.1109/CLOUDTECH.2016.7847719","DOIUrl":null,"url":null,"abstract":"The objective of the present paper is to propose an improved Ant Colony System (ACS) algorithm based on a Hidden Markov Model (HMM) so as dynamically adapt the local pheromone decay parameter ξ. The proposed algorithm uses Iteration and Diversity as indicators of the hidden states in the search space in ACS. To test the efficiency of our algorithm, we experimented it on several benchmark Travelling Salesman Problem (TSP) instances. The results have proven the effectiveness of our algorithm in both the convergence speed and the solution quality.","PeriodicalId":133495,"journal":{"name":"2016 2nd International Conference on Cloud Computing Technologies and Applications (CloudTech)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Dynamic adaptation of the ACS-TSP local pheromone decay parameter based on the Hidden Markov Model\",\"authors\":\"Safae Bouzbita, A. El Afia, R. Faizi, Mustapha Zbakh\",\"doi\":\"10.1109/CLOUDTECH.2016.7847719\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The objective of the present paper is to propose an improved Ant Colony System (ACS) algorithm based on a Hidden Markov Model (HMM) so as dynamically adapt the local pheromone decay parameter ξ. The proposed algorithm uses Iteration and Diversity as indicators of the hidden states in the search space in ACS. To test the efficiency of our algorithm, we experimented it on several benchmark Travelling Salesman Problem (TSP) instances. The results have proven the effectiveness of our algorithm in both the convergence speed and the solution quality.\",\"PeriodicalId\":133495,\"journal\":{\"name\":\"2016 2nd International Conference on Cloud Computing Technologies and Applications (CloudTech)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 2nd International Conference on Cloud Computing Technologies and Applications (CloudTech)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CLOUDTECH.2016.7847719\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 2nd International Conference on Cloud Computing Technologies and Applications (CloudTech)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLOUDTECH.2016.7847719","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

本文的目的是提出一种基于隐马尔可夫模型的改进蚁群系统(ACS)算法,以动态适应局部信息素衰减参数ξ。该算法使用迭代和多样性作为ACS搜索空间中隐藏状态的指示器。为了测试算法的有效性,我们在几个旅行推销员问题(TSP)的基准实例上进行了实验。实验结果证明了该算法在收敛速度和解质量上的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic adaptation of the ACS-TSP local pheromone decay parameter based on the Hidden Markov Model
The objective of the present paper is to propose an improved Ant Colony System (ACS) algorithm based on a Hidden Markov Model (HMM) so as dynamically adapt the local pheromone decay parameter ξ. The proposed algorithm uses Iteration and Diversity as indicators of the hidden states in the search space in ACS. To test the efficiency of our algorithm, we experimented it on several benchmark Travelling Salesman Problem (TSP) instances. The results have proven the effectiveness of our algorithm in both the convergence speed and the solution quality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信