{"title":"基于旋转储备和功率速率限制的最优动态调度","authors":"P.P.J. van den Bosch","doi":"10.1109/TPAS.1985.318868","DOIUrl":null,"url":null,"abstract":"This paper deals with the formulation and solution of the optimal dynamic dispatch problem owing to spinning-reserve and power-rate limits. The power production of a thermal unit is considered as a dynamic system, which limits the maximum increase and decrease of power. The solution is obtained with a special projection method having conjugate search directions that quickly and accurately solves the associated non-linear programming problem with up to 2400 variables and up to 9600 constraints.","PeriodicalId":227345,"journal":{"name":"IEEE Transactions on Power Apparatus and Systems","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1985-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"48","resultStr":"{\"title\":\"Optimal Dynamic Dispatch Owing to Spinning-Reserve and Power-Rate Limits\",\"authors\":\"P.P.J. van den Bosch\",\"doi\":\"10.1109/TPAS.1985.318868\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with the formulation and solution of the optimal dynamic dispatch problem owing to spinning-reserve and power-rate limits. The power production of a thermal unit is considered as a dynamic system, which limits the maximum increase and decrease of power. The solution is obtained with a special projection method having conjugate search directions that quickly and accurately solves the associated non-linear programming problem with up to 2400 variables and up to 9600 constraints.\",\"PeriodicalId\":227345,\"journal\":{\"name\":\"IEEE Transactions on Power Apparatus and Systems\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1985-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"48\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Power Apparatus and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TPAS.1985.318868\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Power Apparatus and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TPAS.1985.318868","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimal Dynamic Dispatch Owing to Spinning-Reserve and Power-Rate Limits
This paper deals with the formulation and solution of the optimal dynamic dispatch problem owing to spinning-reserve and power-rate limits. The power production of a thermal unit is considered as a dynamic system, which limits the maximum increase and decrease of power. The solution is obtained with a special projection method having conjugate search directions that quickly and accurately solves the associated non-linear programming problem with up to 2400 variables and up to 9600 constraints.