非线性Schrödinger通道容量的上界

Mansoor I. Yousefi, G. Kramer, F. Kschischang
{"title":"非线性Schrödinger通道容量的上界","authors":"Mansoor I. Yousefi, G. Kramer, F. Kschischang","doi":"10.1109/CWIT.2015.7255144","DOIUrl":null,"url":null,"abstract":"It is shown that the capacity of the channel modeled by (a discretized version of) the stochastic nonlinear Schrödinger (NLS) equation is upper-bounded by log(l + SNR) with SNR = P<sub>0</sub>/σ<sup>2</sup>(z), where P<sub>0</sub> is the average input signal power and σ<sup>2</sup>(z) is the total noise power up to distance z. The result is a consequence of the fact that the deterministic NLS equation is a Hamiltonian energy-preserving dynamical system.","PeriodicalId":426245,"journal":{"name":"2015 IEEE 14th Canadian Workshop on Information Theory (CWIT)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"Upper bound on the capacity of the nonlinear Schrödinger channel\",\"authors\":\"Mansoor I. Yousefi, G. Kramer, F. Kschischang\",\"doi\":\"10.1109/CWIT.2015.7255144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is shown that the capacity of the channel modeled by (a discretized version of) the stochastic nonlinear Schrödinger (NLS) equation is upper-bounded by log(l + SNR) with SNR = P<sub>0</sub>/σ<sup>2</sup>(z), where P<sub>0</sub> is the average input signal power and σ<sup>2</sup>(z) is the total noise power up to distance z. The result is a consequence of the fact that the deterministic NLS equation is a Hamiltonian energy-preserving dynamical system.\",\"PeriodicalId\":426245,\"journal\":{\"name\":\"2015 IEEE 14th Canadian Workshop on Information Theory (CWIT)\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 14th Canadian Workshop on Information Theory (CWIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CWIT.2015.7255144\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 14th Canadian Workshop on Information Theory (CWIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CWIT.2015.7255144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

摘要

结果表明,随机非线性Schrödinger (NLS)方程(离散化版)的信道容量以log(l + SNR)为上界,SNR = P0/σ2(z),其中P0为平均输入信号功率,σ2(z)为距离z处的总噪声功率。这是确定性NLS方程是哈密顿能量守恒动力系统的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Upper bound on the capacity of the nonlinear Schrödinger channel
It is shown that the capacity of the channel modeled by (a discretized version of) the stochastic nonlinear Schrödinger (NLS) equation is upper-bounded by log(l + SNR) with SNR = P02(z), where P0 is the average input signal power and σ2(z) is the total noise power up to distance z. The result is a consequence of the fact that the deterministic NLS equation is a Hamiltonian energy-preserving dynamical system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信