三维洛马克斯射线及其在复杂介质声场模拟中的应用

D. A. Neklyudov, M. I. Protasov
{"title":"三维洛马克斯射线及其在复杂介质声场模拟中的应用","authors":"D. A. Neklyudov, M. I. Protasov","doi":"10.18303/2619-1563-2023-2-56","DOIUrl":null,"url":null,"abstract":"We present a simple and robust approach for calculating frequency-dependent rays in three dimensional media. The proposed method simulates propagation of locally plane fragment of a wavefront. Ray properties depends on velocity distribution in some sub-volume around the ray and on wavelength in each point. Numerical experiment demonstrates the applicability of the proposed method to calculate travel-times and ray-based acoustic wavefields in complex 3D environments with the presence of slat intrusion.","PeriodicalId":190530,"journal":{"name":"Russian Journal of Geophysical Technologies","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"3D Lomax rays and its application for acoustic wavefield simulation in complex media\",\"authors\":\"D. A. Neklyudov, M. I. Protasov\",\"doi\":\"10.18303/2619-1563-2023-2-56\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a simple and robust approach for calculating frequency-dependent rays in three dimensional media. The proposed method simulates propagation of locally plane fragment of a wavefront. Ray properties depends on velocity distribution in some sub-volume around the ray and on wavelength in each point. Numerical experiment demonstrates the applicability of the proposed method to calculate travel-times and ray-based acoustic wavefields in complex 3D environments with the presence of slat intrusion.\",\"PeriodicalId\":190530,\"journal\":{\"name\":\"Russian Journal of Geophysical Technologies\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Journal of Geophysical Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18303/2619-1563-2023-2-56\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Geophysical Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18303/2619-1563-2023-2-56","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种简单而稳健的方法来计算三维介质中频率相关的射线。该方法模拟了波前局部平面碎片的传播。射线的性质取决于射线周围某些子体积的速度分布和每个点的波长。数值实验验证了该方法在存在板条侵入的复杂三维环境下的行时和基于射线的声波场计算中的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
3D Lomax rays and its application for acoustic wavefield simulation in complex media
We present a simple and robust approach for calculating frequency-dependent rays in three dimensional media. The proposed method simulates propagation of locally plane fragment of a wavefront. Ray properties depends on velocity distribution in some sub-volume around the ray and on wavelength in each point. Numerical experiment demonstrates the applicability of the proposed method to calculate travel-times and ray-based acoustic wavefields in complex 3D environments with the presence of slat intrusion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信