自组织映射适应MapReduce编程范式

Christian Weichel
{"title":"自组织映射适应MapReduce编程范式","authors":"Christian Weichel","doi":"10.1524/9783486853162.119","DOIUrl":null,"url":null,"abstract":"We present an adaption of the self organizing map (SOM) useful for cluster analysis of large quantities of data such as music classification or customer behavior analysis. The algorithm is based on the batch SOM formulation which has been successfully adopted to other parallel architectures and perfectly suits the map reduce programming paradigm, thus enabling the use of large cloud computing infrastructures such as Amazon EC2.","PeriodicalId":165450,"journal":{"name":"Conference on Semantics in Text Processing","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Adapting Self-Organizing Maps to the MapReduce Programming Paradigm\",\"authors\":\"Christian Weichel\",\"doi\":\"10.1524/9783486853162.119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an adaption of the self organizing map (SOM) useful for cluster analysis of large quantities of data such as music classification or customer behavior analysis. The algorithm is based on the batch SOM formulation which has been successfully adopted to other parallel architectures and perfectly suits the map reduce programming paradigm, thus enabling the use of large cloud computing infrastructures such as Amazon EC2.\",\"PeriodicalId\":165450,\"journal\":{\"name\":\"Conference on Semantics in Text Processing\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference on Semantics in Text Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1524/9783486853162.119\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference on Semantics in Text Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1524/9783486853162.119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

我们提出了一种自组织映射(SOM)的改编,用于大量数据的聚类分析,如音乐分类或客户行为分析。该算法基于批量SOM公式,该公式已成功应用于其他并行架构,非常适合map reduce编程范式,从而可以使用Amazon EC2等大型云计算基础设施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adapting Self-Organizing Maps to the MapReduce Programming Paradigm
We present an adaption of the self organizing map (SOM) useful for cluster analysis of large quantities of data such as music classification or customer behavior analysis. The algorithm is based on the batch SOM formulation which has been successfully adopted to other parallel architectures and perfectly suits the map reduce programming paradigm, thus enabling the use of large cloud computing infrastructures such as Amazon EC2.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信