Marc Eisoldt, M. Flottmann, Julian Gaal, Pascal Buschermöhle, Steffen Hinderink, Malte Hillmann, Adrian Nitschmann, Patrick Hoffmann, T. Wiemann, Mario Porrmann
{"title":"用于可重构soc的硬件加速TSDF SLAM","authors":"Marc Eisoldt, M. Flottmann, Julian Gaal, Pascal Buschermöhle, Steffen Hinderink, Malte Hillmann, Adrian Nitschmann, Patrick Hoffmann, T. Wiemann, Mario Porrmann","doi":"10.1109/ecmr50962.2021.9568815","DOIUrl":null,"url":null,"abstract":"Simultaneous Localization and Mapping (SLAM) is one of the fundamental problems in autonomous robotics. Over the years, many approaches to solve this problem for 6D poses and 3D maps based on LiDAR sensors or depth cameras have been proposed. One of the main drawbacks of the solutions found in the literature is the required computational power and corresponding energy consumption. In this paper, we present an approach for LiDAR-based SLAM that maintains a global truncated signed distance function (TSDF) to represent the map. It is implemented on a System On Chip (SoC) with an integrated FPGA accelerator. The proposed system is able to track the position of a Velodyne VLP-16 LiDAR in real time, while maintaining a global TSDF map that can be used to create a polygonal map of the environment. We show that our implementation delivers competitive results compared to state-of-the-art algorithms while drastically reducing the power consumption compared to classical CPU or GPU-based methods.","PeriodicalId":200521,"journal":{"name":"2021 European Conference on Mobile Robots (ECMR)","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"HATSDF SLAM – Hardware-accelerated TSDF SLAM for Reconfigurable SoCs\",\"authors\":\"Marc Eisoldt, M. Flottmann, Julian Gaal, Pascal Buschermöhle, Steffen Hinderink, Malte Hillmann, Adrian Nitschmann, Patrick Hoffmann, T. Wiemann, Mario Porrmann\",\"doi\":\"10.1109/ecmr50962.2021.9568815\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Simultaneous Localization and Mapping (SLAM) is one of the fundamental problems in autonomous robotics. Over the years, many approaches to solve this problem for 6D poses and 3D maps based on LiDAR sensors or depth cameras have been proposed. One of the main drawbacks of the solutions found in the literature is the required computational power and corresponding energy consumption. In this paper, we present an approach for LiDAR-based SLAM that maintains a global truncated signed distance function (TSDF) to represent the map. It is implemented on a System On Chip (SoC) with an integrated FPGA accelerator. The proposed system is able to track the position of a Velodyne VLP-16 LiDAR in real time, while maintaining a global TSDF map that can be used to create a polygonal map of the environment. We show that our implementation delivers competitive results compared to state-of-the-art algorithms while drastically reducing the power consumption compared to classical CPU or GPU-based methods.\",\"PeriodicalId\":200521,\"journal\":{\"name\":\"2021 European Conference on Mobile Robots (ECMR)\",\"volume\":\"72 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 European Conference on Mobile Robots (ECMR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ecmr50962.2021.9568815\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 European Conference on Mobile Robots (ECMR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ecmr50962.2021.9568815","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
HATSDF SLAM – Hardware-accelerated TSDF SLAM for Reconfigurable SoCs
Simultaneous Localization and Mapping (SLAM) is one of the fundamental problems in autonomous robotics. Over the years, many approaches to solve this problem for 6D poses and 3D maps based on LiDAR sensors or depth cameras have been proposed. One of the main drawbacks of the solutions found in the literature is the required computational power and corresponding energy consumption. In this paper, we present an approach for LiDAR-based SLAM that maintains a global truncated signed distance function (TSDF) to represent the map. It is implemented on a System On Chip (SoC) with an integrated FPGA accelerator. The proposed system is able to track the position of a Velodyne VLP-16 LiDAR in real time, while maintaining a global TSDF map that can be used to create a polygonal map of the environment. We show that our implementation delivers competitive results compared to state-of-the-art algorithms while drastically reducing the power consumption compared to classical CPU or GPU-based methods.