一阶时滞系统的FO-PI镇定

S. Hafsi, K. Laabidi, R. Farkh
{"title":"一阶时滞系统的FO-PI镇定","authors":"S. Hafsi, K. Laabidi, R. Farkh","doi":"10.1109/ICOSC.2013.6750913","DOIUrl":null,"url":null,"abstract":"This paper presents a new tuning method for frational PI<sup>λ</sup> controllers. The main contribution is based on Hermite-Biehler theorem for time delay systems. A solution to the problem of stabilizing a given first order time delay plant is offered. The set of admissible (k<sub>p</sub>, k<sub>i</sub>) gain values is determined for the various values of λ and plotted in (k<sub>p</sub>, k<sub>i</sub>, λ) plane. The viability of the method is verified using two examples where λ ∈ [0.1 : 0.1 : 1] and λ ∈ ]1 : 0.1 : 2[. The comparison results show the effect of the fractional order integral.","PeriodicalId":199135,"journal":{"name":"3rd International Conference on Systems and Control","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stabilization using FO-PI controllers for first-order time delay systems\",\"authors\":\"S. Hafsi, K. Laabidi, R. Farkh\",\"doi\":\"10.1109/ICOSC.2013.6750913\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new tuning method for frational PI<sup>λ</sup> controllers. The main contribution is based on Hermite-Biehler theorem for time delay systems. A solution to the problem of stabilizing a given first order time delay plant is offered. The set of admissible (k<sub>p</sub>, k<sub>i</sub>) gain values is determined for the various values of λ and plotted in (k<sub>p</sub>, k<sub>i</sub>, λ) plane. The viability of the method is verified using two examples where λ ∈ [0.1 : 0.1 : 1] and λ ∈ ]1 : 0.1 : 2[. The comparison results show the effect of the fractional order integral.\",\"PeriodicalId\":199135,\"journal\":{\"name\":\"3rd International Conference on Systems and Control\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"3rd International Conference on Systems and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICOSC.2013.6750913\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"3rd International Conference on Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOSC.2013.6750913","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种新的分形PIλ控制器整定方法。主要的贡献是基于时滞系统的Hermite-Biehler定理。给出了一类给定一阶时滞对象的稳定问题的解法。对于λ的各种值,确定了允许的(kp, ki)增益值集,并绘制在(kp, ki, λ)平面上。用λ∈[0.1:0.1:1]和λ∈]1:0.1:2[的两个例子验证了该方法的可行性。对比结果显示了分数阶积分的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stabilization using FO-PI controllers for first-order time delay systems
This paper presents a new tuning method for frational PIλ controllers. The main contribution is based on Hermite-Biehler theorem for time delay systems. A solution to the problem of stabilizing a given first order time delay plant is offered. The set of admissible (kp, ki) gain values is determined for the various values of λ and plotted in (kp, ki, λ) plane. The viability of the method is verified using two examples where λ ∈ [0.1 : 0.1 : 1] and λ ∈ ]1 : 0.1 : 2[. The comparison results show the effect of the fractional order integral.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信