可扩展的大规模并行I/O到任务本地文件

W. Frings, F. Wolf, Ventsislav Petkov
{"title":"可扩展的大规模并行I/O到任务本地文件","authors":"W. Frings, F. Wolf, Ventsislav Petkov","doi":"10.1145/1654059.1654077","DOIUrl":null,"url":null,"abstract":"Parallel applications often store data in multiple task-local files, for example, to remember checkpoints, to circumvent memory limitations, or to record performance data. When operating at very large processor configurations, such applications often experience scalability limitations when the simultaneous creation of thousands of files causes metadataserver contention or simply when large file counts complicate file management or operations on those files even destabilize the file system. SIONlib is a parallel I/O library that addresses this problem by transparently mapping a large number of task-local files onto a small number of physical files via internal metadata handling and block alignment to ensure high performance. While requiring only minimal source code changes, SIONlib significantly reduces file creation overhead and simplifies file handling without penalizing read and write performance. We evaluate SIONlib's efficiency with up to 288 K tasks and report significant performance improvements in two application scenarios.","PeriodicalId":371415,"journal":{"name":"Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"95","resultStr":"{\"title\":\"Scalable massively parallel I/O to task-local files\",\"authors\":\"W. Frings, F. Wolf, Ventsislav Petkov\",\"doi\":\"10.1145/1654059.1654077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Parallel applications often store data in multiple task-local files, for example, to remember checkpoints, to circumvent memory limitations, or to record performance data. When operating at very large processor configurations, such applications often experience scalability limitations when the simultaneous creation of thousands of files causes metadataserver contention or simply when large file counts complicate file management or operations on those files even destabilize the file system. SIONlib is a parallel I/O library that addresses this problem by transparently mapping a large number of task-local files onto a small number of physical files via internal metadata handling and block alignment to ensure high performance. While requiring only minimal source code changes, SIONlib significantly reduces file creation overhead and simplifies file handling without penalizing read and write performance. We evaluate SIONlib's efficiency with up to 288 K tasks and report significant performance improvements in two application scenarios.\",\"PeriodicalId\":371415,\"journal\":{\"name\":\"Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"95\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1654059.1654077\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1654059.1654077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 95

摘要

并行应用程序通常将数据存储在多个任务本地文件中,例如,为了记住检查点、规避内存限制或记录性能数据。当在非常大的处理器配置下操作时,当同时创建数千个文件导致元数据服务器争用,或者当大文件数量使文件管理复杂化或对这些文件的操作甚至破坏文件系统的稳定性时,此类应用程序通常会遇到可伸缩性限制。SIONlib是一个并行I/O库,它通过内部元数据处理和块对齐透明地将大量任务本地文件映射到少量物理文件上,以确保高性能,从而解决了这个问题。虽然只需要最小的源代码更改,但SIONlib显着降低了文件创建开销,简化了文件处理,而不会影响读写性能。我们在高达288 K的任务中评估了SIONlib的效率,并报告了在两个应用程序场景中的显著性能改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scalable massively parallel I/O to task-local files
Parallel applications often store data in multiple task-local files, for example, to remember checkpoints, to circumvent memory limitations, or to record performance data. When operating at very large processor configurations, such applications often experience scalability limitations when the simultaneous creation of thousands of files causes metadataserver contention or simply when large file counts complicate file management or operations on those files even destabilize the file system. SIONlib is a parallel I/O library that addresses this problem by transparently mapping a large number of task-local files onto a small number of physical files via internal metadata handling and block alignment to ensure high performance. While requiring only minimal source code changes, SIONlib significantly reduces file creation overhead and simplifies file handling without penalizing read and write performance. We evaluate SIONlib's efficiency with up to 288 K tasks and report significant performance improvements in two application scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信