包涵体成像采用单次超声和卷积神经网络

A. Stankevich, A. Vasyukov, Igor Petrov
{"title":"包涵体成像采用单次超声和卷积神经网络","authors":"A. Stankevich, A. Vasyukov, Igor Petrov","doi":"10.1109/ivmem53963.2021.00020","DOIUrl":null,"url":null,"abstract":"This paper consider the problem of harder inclusion localization in an elastic media. The imaging method is based on a single-shot ultrasound with a linear array. Discontinuous Galerkin method is used for direct problem modeling and obtaining wave propagation patterns in the media. Two different architectures of convolutional neural networks are used for the inverse problem. The paper provides the numerical results for the quality of the inclusion localization depending on the neural network architecture and the shape of the heterogeneity.","PeriodicalId":360766,"journal":{"name":"2021 Ivannikov Memorial Workshop (IVMEM)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inclusion imaging using single-shot ultrasound and convolutional neural networks\",\"authors\":\"A. Stankevich, A. Vasyukov, Igor Petrov\",\"doi\":\"10.1109/ivmem53963.2021.00020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper consider the problem of harder inclusion localization in an elastic media. The imaging method is based on a single-shot ultrasound with a linear array. Discontinuous Galerkin method is used for direct problem modeling and obtaining wave propagation patterns in the media. Two different architectures of convolutional neural networks are used for the inverse problem. The paper provides the numerical results for the quality of the inclusion localization depending on the neural network architecture and the shape of the heterogeneity.\",\"PeriodicalId\":360766,\"journal\":{\"name\":\"2021 Ivannikov Memorial Workshop (IVMEM)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 Ivannikov Memorial Workshop (IVMEM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ivmem53963.2021.00020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Ivannikov Memorial Workshop (IVMEM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ivmem53963.2021.00020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究弹性介质中的硬包体局部化问题。该成像方法是基于线性阵列的单次超声。采用不连续伽辽金法进行直接问题建模,得到波在介质中的传播模式。卷积神经网络的两种不同的结构被用于反问题。本文给出了基于神经网络结构和非均质性形状的包体定位质量的数值结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inclusion imaging using single-shot ultrasound and convolutional neural networks
This paper consider the problem of harder inclusion localization in an elastic media. The imaging method is based on a single-shot ultrasound with a linear array. Discontinuous Galerkin method is used for direct problem modeling and obtaining wave propagation patterns in the media. Two different architectures of convolutional neural networks are used for the inverse problem. The paper provides the numerical results for the quality of the inclusion localization depending on the neural network architecture and the shape of the heterogeneity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信