非交换几何的可积模型,及其在三维对偶性中的应用

A. Sharapov, E. Skvortsov
{"title":"非交换几何的可积模型,及其在三维对偶性中的应用","authors":"A. Sharapov, E. Skvortsov","doi":"10.22323/1.406.0253","DOIUrl":null,"url":null,"abstract":"We discuss a new class of strong homotopy algebras constructed via inner deformations. Such deformations have a number of remarkable properties. In the simplest case, every one-parameter family of associative algebras leads to an $L_\\infty$-algebra that can be used to construct a classical integrable model. Another application of this class of $L_\\infty$-algebras is related with the three-dimensional bosonization duality in Chern--Simons vector models, where it implements the idea of the slightly-broken higher spin symmetry. One large class of associative algebras originates from Deformation Quantization of Poisson Manifolds. Applications to the $3d$-bosonization duality require, however, an extension to deformation quantization of Poisson Orbifolds, which is an open problem. The $3d$-bosonization duality can be proven by showing that there is a unique class of invariants of the $L_\\infty$-algebra that can serve as correlation functions.","PeriodicalId":131792,"journal":{"name":"Proceedings of Corfu Summer Institute 2021 \"School and Workshops on Elementary Particle Physics and Gravity\" — PoS(CORFU2021)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Integrable models from non-commutative geometry, with applications to 3d dualities\",\"authors\":\"A. Sharapov, E. Skvortsov\",\"doi\":\"10.22323/1.406.0253\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We discuss a new class of strong homotopy algebras constructed via inner deformations. Such deformations have a number of remarkable properties. In the simplest case, every one-parameter family of associative algebras leads to an $L_\\\\infty$-algebra that can be used to construct a classical integrable model. Another application of this class of $L_\\\\infty$-algebras is related with the three-dimensional bosonization duality in Chern--Simons vector models, where it implements the idea of the slightly-broken higher spin symmetry. One large class of associative algebras originates from Deformation Quantization of Poisson Manifolds. Applications to the $3d$-bosonization duality require, however, an extension to deformation quantization of Poisson Orbifolds, which is an open problem. The $3d$-bosonization duality can be proven by showing that there is a unique class of invariants of the $L_\\\\infty$-algebra that can serve as correlation functions.\",\"PeriodicalId\":131792,\"journal\":{\"name\":\"Proceedings of Corfu Summer Institute 2021 \\\"School and Workshops on Elementary Particle Physics and Gravity\\\" — PoS(CORFU2021)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of Corfu Summer Institute 2021 \\\"School and Workshops on Elementary Particle Physics and Gravity\\\" — PoS(CORFU2021)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22323/1.406.0253\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Corfu Summer Institute 2021 \"School and Workshops on Elementary Particle Physics and Gravity\" — PoS(CORFU2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22323/1.406.0253","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

讨论了一类由内变形构造的强同伦代数。这种变形有许多显著的特性。在最简单的情况下,每一个单参数的结合代数族都会导致一个$L_\infty$ -代数,它可以用来构造一个经典的可积模型。这类$L_\infty$ -代数的另一个应用与chen -Simons矢量模型中的三维玻色子化对偶有关,其中它实现了轻微破缺的高自旋对称的思想。一大类关联代数来源于泊松流形的变形量化。然而,对$3d$ -玻色子化对偶的应用需要对泊松轨道的变形量子化进行扩展,这是一个开放的问题。$3d$ -玻色子化对偶性可以通过证明$L_\infty$ -代数中存在唯一的一类可以作为相关函数的不变量来证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integrable models from non-commutative geometry, with applications to 3d dualities
We discuss a new class of strong homotopy algebras constructed via inner deformations. Such deformations have a number of remarkable properties. In the simplest case, every one-parameter family of associative algebras leads to an $L_\infty$-algebra that can be used to construct a classical integrable model. Another application of this class of $L_\infty$-algebras is related with the three-dimensional bosonization duality in Chern--Simons vector models, where it implements the idea of the slightly-broken higher spin symmetry. One large class of associative algebras originates from Deformation Quantization of Poisson Manifolds. Applications to the $3d$-bosonization duality require, however, an extension to deformation quantization of Poisson Orbifolds, which is an open problem. The $3d$-bosonization duality can be proven by showing that there is a unique class of invariants of the $L_\infty$-algebra that can serve as correlation functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信