基于凸多边形模型的对话框语义模式自动提取

Jingyan Zhou, Xiaoying Zhang, Xiaohan Feng, King Keung Wu, H. Meng
{"title":"基于凸多边形模型的对话框语义模式自动提取","authors":"Jingyan Zhou, Xiaoying Zhang, Xiaohan Feng, King Keung Wu, H. Meng","doi":"10.1109/ISCSLP49672.2021.9362051","DOIUrl":null,"url":null,"abstract":"Natural Language Understanding (NLU) in task-oriented dialog systems usually requires annotated data for training the understanding module. Annotation of large data sets is a costly process. This paper proposes an unsupervised framework based on Convex Polytopic Model (CPM), which automatically extracts semantic patterns from a raw dialog corpus using a geometric approach to assist in generating the semantic frames. We discover that the semantic patterns extracted are easily interpretable and have a strong correlation with the intent and slots of the semantic frames and may potentially serve as the basic units for NLU. This is an initial investigation of the properties of CPM to explore its semantic interpretability. Experiments are based on the ATIS (Air Travel Information System) corpora and show that CPM can generate semantic frames with minimal supervision.","PeriodicalId":279828,"journal":{"name":"2021 12th International Symposium on Chinese Spoken Language Processing (ISCSLP)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Automatic Extraction of Semantic Patterns in Dialogs using Convex Polytopic Model\",\"authors\":\"Jingyan Zhou, Xiaoying Zhang, Xiaohan Feng, King Keung Wu, H. Meng\",\"doi\":\"10.1109/ISCSLP49672.2021.9362051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Natural Language Understanding (NLU) in task-oriented dialog systems usually requires annotated data for training the understanding module. Annotation of large data sets is a costly process. This paper proposes an unsupervised framework based on Convex Polytopic Model (CPM), which automatically extracts semantic patterns from a raw dialog corpus using a geometric approach to assist in generating the semantic frames. We discover that the semantic patterns extracted are easily interpretable and have a strong correlation with the intent and slots of the semantic frames and may potentially serve as the basic units for NLU. This is an initial investigation of the properties of CPM to explore its semantic interpretability. Experiments are based on the ATIS (Air Travel Information System) corpora and show that CPM can generate semantic frames with minimal supervision.\",\"PeriodicalId\":279828,\"journal\":{\"name\":\"2021 12th International Symposium on Chinese Spoken Language Processing (ISCSLP)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 12th International Symposium on Chinese Spoken Language Processing (ISCSLP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCSLP49672.2021.9362051\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 12th International Symposium on Chinese Spoken Language Processing (ISCSLP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCSLP49672.2021.9362051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

面向任务的对话系统中的自然语言理解(NLU)通常需要带注释的数据来训练理解模块。大型数据集的注释是一个代价高昂的过程。本文提出了一种基于凸多边形模型(凸多边形模型)的无监督框架,该框架使用几何方法从原始对话语料库中自动提取语义模式,以辅助生成语义框架。我们发现,提取的语义模式易于解释,并且与语义框架的意图和槽有很强的相关性,可以作为NLU的基本单位。本文是对CPM属性的初步研究,旨在探索其语义可解释性。基于ATIS(航空旅行信息系统)语料库的实验表明,CPM可以在最少的监督下生成语义框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic Extraction of Semantic Patterns in Dialogs using Convex Polytopic Model
Natural Language Understanding (NLU) in task-oriented dialog systems usually requires annotated data for training the understanding module. Annotation of large data sets is a costly process. This paper proposes an unsupervised framework based on Convex Polytopic Model (CPM), which automatically extracts semantic patterns from a raw dialog corpus using a geometric approach to assist in generating the semantic frames. We discover that the semantic patterns extracted are easily interpretable and have a strong correlation with the intent and slots of the semantic frames and may potentially serve as the basic units for NLU. This is an initial investigation of the properties of CPM to explore its semantic interpretability. Experiments are based on the ATIS (Air Travel Information System) corpora and show that CPM can generate semantic frames with minimal supervision.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信