I2CU:专用Im2col硬件单元

Tao Zhongyu, Wang Yuanfeng, Zhang Huaisheng
{"title":"I2CU:专用Im2col硬件单元","authors":"Tao Zhongyu, Wang Yuanfeng, Zhang Huaisheng","doi":"10.1109/iccwamtip56608.2022.10016515","DOIUrl":null,"url":null,"abstract":"For Convolution Neural Network (CNN), the convolution operation for feature map and weight map usually implemented by im2col + GEMM method. However, for conventional method need expand feature map to a large feature matrix during a single kernel function based on convolution parameters (i.e. filter size, padding, and stride), then multiplication for matrixes took place in another function. Thus the conventional method will generate tons data transfer and the large feature matrix requires enormous storage space, it is hardware unfriendly.We design a hardware unit, I2CU (Im2Col Unit), a dedicated hardware unit to implement im2col in hardware friendly way. I2CU dynamically expand loaded 4D-Block return from texture unit and write back destination matrix to shared memory. I2CU can decrease the feature matrix storage space and implement im2col + GEMM in one kernel function.","PeriodicalId":159508,"journal":{"name":"2022 19th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP)","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"I2CU: A Dedicated Im2col Hardware Unit\",\"authors\":\"Tao Zhongyu, Wang Yuanfeng, Zhang Huaisheng\",\"doi\":\"10.1109/iccwamtip56608.2022.10016515\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For Convolution Neural Network (CNN), the convolution operation for feature map and weight map usually implemented by im2col + GEMM method. However, for conventional method need expand feature map to a large feature matrix during a single kernel function based on convolution parameters (i.e. filter size, padding, and stride), then multiplication for matrixes took place in another function. Thus the conventional method will generate tons data transfer and the large feature matrix requires enormous storage space, it is hardware unfriendly.We design a hardware unit, I2CU (Im2Col Unit), a dedicated hardware unit to implement im2col in hardware friendly way. I2CU dynamically expand loaded 4D-Block return from texture unit and write back destination matrix to shared memory. I2CU can decrease the feature matrix storage space and implement im2col + GEMM in one kernel function.\",\"PeriodicalId\":159508,\"journal\":{\"name\":\"2022 19th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP)\",\"volume\":\"73 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 19th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/iccwamtip56608.2022.10016515\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 19th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iccwamtip56608.2022.10016515","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于卷积神经网络(convolutional Neural Network, CNN), feature map和weight map的卷积运算通常采用im2col + GEMM方法实现。然而,传统方法需要基于卷积参数(即滤波器大小、填充和步幅)在单个核函数期间将特征映射扩展到一个大的特征矩阵,然后在另一个函数中对矩阵进行乘法运算。传统的方法会产生大量的数据传输,而且大的特征矩阵需要巨大的存储空间,对硬件不友好。我们设计了一个硬件单元I2CU (Im2Col unit),一个专用的硬件单元,以硬件友好的方式实现Im2Col。I2CU动态扩展加载的4d块从纹理单元返回,并将目标矩阵写回共享内存。I2CU可以减少特征矩阵的存储空间,在一个内核函数中实现im2col + GEMM。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
I2CU: A Dedicated Im2col Hardware Unit
For Convolution Neural Network (CNN), the convolution operation for feature map and weight map usually implemented by im2col + GEMM method. However, for conventional method need expand feature map to a large feature matrix during a single kernel function based on convolution parameters (i.e. filter size, padding, and stride), then multiplication for matrixes took place in another function. Thus the conventional method will generate tons data transfer and the large feature matrix requires enormous storage space, it is hardware unfriendly.We design a hardware unit, I2CU (Im2Col Unit), a dedicated hardware unit to implement im2col in hardware friendly way. I2CU dynamically expand loaded 4D-Block return from texture unit and write back destination matrix to shared memory. I2CU can decrease the feature matrix storage space and implement im2col + GEMM in one kernel function.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信