海洋环境中涂层结构构件的腐蚀控制

G. Manjunath, S. Surendran
{"title":"海洋环境中涂层结构构件的腐蚀控制","authors":"G. Manjunath, S. Surendran","doi":"10.36956/sms.v1i1.3","DOIUrl":null,"url":null,"abstract":"Tropical waters are with more salinity and harbor millions of micro organisms. Such environmental condition challenges the strength and reliability of marine structures. The behaviour of structural materials due to pitting and uniform corrosion is studied, and a method based on coating is suggested to improve the life cycle ensuring reliability in its functionality. The structural materials like high strength steel and AA6063 were selected for the study and metallic coating performed for evaluation of corrosion resistances. Samples are investigated in chloride concentration of 3.5% NaCl by weight loss measurements and potentiodynamic polarization. The coating was done by electroplating and PVD (Physical Vapour Deposition) method for high strength steel, where as aluminum samples were coated by an electroplating method. The high strength steel samples were mono coated by Ni and Cr using the electroplating method, and composite coating was done with Al-N (Aluminium nitride) and Ti-Al-N (Titanium Aluminium Nitride) by PVD techniques. Scanning electron microscopy (SEM) was used for evaluation of fracture toughness of coating around the pits formed. The investigation showed that the methods and thickness of coating influenced corrosion resistances of the substrate metals. Composite coated samples by PVD showed excellent corrosion resistance properties compared to electroplated samples after the investigations. Finite element analysis was performed by FRANC 2D/L (Fracture Analysis Code) showed a decrease in stress intensity values for composite coated samples of PVD compared to mono coated electroplated samples. Increase in the duty cycle of the structure was observed in the simulation has a result of a decrease in stress intensity values for PVD coated samples.","PeriodicalId":215374,"journal":{"name":"Sustainable Marine Structures","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Corrosion Control of Coated Structural Components in Marine Environment\",\"authors\":\"G. Manjunath, S. Surendran\",\"doi\":\"10.36956/sms.v1i1.3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tropical waters are with more salinity and harbor millions of micro organisms. Such environmental condition challenges the strength and reliability of marine structures. The behaviour of structural materials due to pitting and uniform corrosion is studied, and a method based on coating is suggested to improve the life cycle ensuring reliability in its functionality. The structural materials like high strength steel and AA6063 were selected for the study and metallic coating performed for evaluation of corrosion resistances. Samples are investigated in chloride concentration of 3.5% NaCl by weight loss measurements and potentiodynamic polarization. The coating was done by electroplating and PVD (Physical Vapour Deposition) method for high strength steel, where as aluminum samples were coated by an electroplating method. The high strength steel samples were mono coated by Ni and Cr using the electroplating method, and composite coating was done with Al-N (Aluminium nitride) and Ti-Al-N (Titanium Aluminium Nitride) by PVD techniques. Scanning electron microscopy (SEM) was used for evaluation of fracture toughness of coating around the pits formed. The investigation showed that the methods and thickness of coating influenced corrosion resistances of the substrate metals. Composite coated samples by PVD showed excellent corrosion resistance properties compared to electroplated samples after the investigations. Finite element analysis was performed by FRANC 2D/L (Fracture Analysis Code) showed a decrease in stress intensity values for composite coated samples of PVD compared to mono coated electroplated samples. Increase in the duty cycle of the structure was observed in the simulation has a result of a decrease in stress intensity values for PVD coated samples.\",\"PeriodicalId\":215374,\"journal\":{\"name\":\"Sustainable Marine Structures\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainable Marine Structures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36956/sms.v1i1.3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Marine Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36956/sms.v1i1.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

热带水域含盐量更高,有数百万的微生物。这样的环境条件对海洋结构的强度和可靠性提出了挑战。研究了结构材料在点蚀和均匀腐蚀下的行为,提出了一种基于涂层的方法来提高结构材料的寿命周期,保证其功能的可靠性。研究选用了高强钢和AA6063等结构材料,并进行了金属涂层的耐蚀性评价。用失重法和动电位极化法研究了氯化钠浓度为3.5%时的样品。采用电镀法和物理气相沉积法对高强度钢进行涂层处理,而铝样品采用电镀法进行涂层处理。采用电镀方法对高强度钢样品进行Ni和Cr单涂层处理,并采用PVD技术对Al-N(氮化铝)和Ti-Al-N(氮化钛铝)进行复合涂层处理。采用扫描电子显微镜(SEM)对涂层的断裂韧性进行了评价。研究表明,涂层方法和涂层厚度影响基体金属的耐蚀性。与电镀样品相比,PVD复合涂层样品显示出优异的耐腐蚀性能。通过FRANC 2D/L(断裂分析代码)进行的有限元分析表明,与单一电镀样品相比,PVD复合涂层样品的应力强度值有所降低。在模拟中观察到结构占空比的增加导致PVD涂层样品的应力强度值的降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Corrosion Control of Coated Structural Components in Marine Environment
Tropical waters are with more salinity and harbor millions of micro organisms. Such environmental condition challenges the strength and reliability of marine structures. The behaviour of structural materials due to pitting and uniform corrosion is studied, and a method based on coating is suggested to improve the life cycle ensuring reliability in its functionality. The structural materials like high strength steel and AA6063 were selected for the study and metallic coating performed for evaluation of corrosion resistances. Samples are investigated in chloride concentration of 3.5% NaCl by weight loss measurements and potentiodynamic polarization. The coating was done by electroplating and PVD (Physical Vapour Deposition) method for high strength steel, where as aluminum samples were coated by an electroplating method. The high strength steel samples were mono coated by Ni and Cr using the electroplating method, and composite coating was done with Al-N (Aluminium nitride) and Ti-Al-N (Titanium Aluminium Nitride) by PVD techniques. Scanning electron microscopy (SEM) was used for evaluation of fracture toughness of coating around the pits formed. The investigation showed that the methods and thickness of coating influenced corrosion resistances of the substrate metals. Composite coated samples by PVD showed excellent corrosion resistance properties compared to electroplated samples after the investigations. Finite element analysis was performed by FRANC 2D/L (Fracture Analysis Code) showed a decrease in stress intensity values for composite coated samples of PVD compared to mono coated electroplated samples. Increase in the duty cycle of the structure was observed in the simulation has a result of a decrease in stress intensity values for PVD coated samples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信