{"title":"变排量液压伺服系统的自适应模糊滑模控制","authors":"M. Chiang, Lian-Wang Lee, Hsien-Hsush Liu","doi":"10.1109/FUZZY.2007.4295434","DOIUrl":null,"url":null,"abstract":"The variable displacement hydraulic servo system performs specific characteristics on non-linearity and time-varying. An exact model-based controller is difficult to be realized. In this study, the design method and experimental implementation of an adaptive fuzzy sliding-mode controller (AFSMC) are presented, which has on-line learning ability for dealing with the system time-varying and non-linear uncertainty behaviors for adjusting the control rule parameters. The tuning algorithms are derived in the sense of the Lyapunov stability theorem; thus, the stability of the system can be guaranteed. The experimental results show that the AFSMC can perform excellent position control and path control for the variable displacement hydraulic servo system.","PeriodicalId":236515,"journal":{"name":"2007 IEEE International Fuzzy Systems Conference","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Adaptive Fuzzy Sliding-Mode Control for Variable Displacement Hydraulic Servo System\",\"authors\":\"M. Chiang, Lian-Wang Lee, Hsien-Hsush Liu\",\"doi\":\"10.1109/FUZZY.2007.4295434\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The variable displacement hydraulic servo system performs specific characteristics on non-linearity and time-varying. An exact model-based controller is difficult to be realized. In this study, the design method and experimental implementation of an adaptive fuzzy sliding-mode controller (AFSMC) are presented, which has on-line learning ability for dealing with the system time-varying and non-linear uncertainty behaviors for adjusting the control rule parameters. The tuning algorithms are derived in the sense of the Lyapunov stability theorem; thus, the stability of the system can be guaranteed. The experimental results show that the AFSMC can perform excellent position control and path control for the variable displacement hydraulic servo system.\",\"PeriodicalId\":236515,\"journal\":{\"name\":\"2007 IEEE International Fuzzy Systems Conference\",\"volume\":\"72 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE International Fuzzy Systems Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FUZZY.2007.4295434\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Fuzzy Systems Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZY.2007.4295434","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Adaptive Fuzzy Sliding-Mode Control for Variable Displacement Hydraulic Servo System
The variable displacement hydraulic servo system performs specific characteristics on non-linearity and time-varying. An exact model-based controller is difficult to be realized. In this study, the design method and experimental implementation of an adaptive fuzzy sliding-mode controller (AFSMC) are presented, which has on-line learning ability for dealing with the system time-varying and non-linear uncertainty behaviors for adjusting the control rule parameters. The tuning algorithms are derived in the sense of the Lyapunov stability theorem; thus, the stability of the system can be guaranteed. The experimental results show that the AFSMC can perform excellent position control and path control for the variable displacement hydraulic servo system.