CPU/GPU异构集群系统中避免通信的平铺QR分解

M. Takayanagi, Tomohiro Suzuki
{"title":"CPU/GPU异构集群系统中避免通信的平铺QR分解","authors":"M. Takayanagi, Tomohiro Suzuki","doi":"10.1109/MCSoC2018.2018.00031","DOIUrl":null,"url":null,"abstract":"The tile algorithm for matrix decompositions is attracting attention as a method for the latest multicore/many-core architecture because it can generate many fine-grained tasks which can be executed in parallel. Exploiting many parallel computing resources effectively with a fork-join paradigm is difficult. CPU/GPU heterogeneous cluster system is mainstream for a supercomputer system in recent years. Using the CPU/GPU cluster system efficiently is more difficult than efficiently utilizing the multicore cluster system. We implemented the tile CAQR decomposition algorithm on the CPU/GPU cluster system with OpenMP 4.0, MPI and cuBLAS, and proposed new approaches to utilize GPUs efficiently. In this paper, we show the performance result of our implementation on the Reedbush-H heterogeneous supercomputer.","PeriodicalId":413836,"journal":{"name":"2018 IEEE 12th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC)","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Communication-Avoiding Tile QR Decomposition on CPU/GPU Heterogeneous Cluster System\",\"authors\":\"M. Takayanagi, Tomohiro Suzuki\",\"doi\":\"10.1109/MCSoC2018.2018.00031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The tile algorithm for matrix decompositions is attracting attention as a method for the latest multicore/many-core architecture because it can generate many fine-grained tasks which can be executed in parallel. Exploiting many parallel computing resources effectively with a fork-join paradigm is difficult. CPU/GPU heterogeneous cluster system is mainstream for a supercomputer system in recent years. Using the CPU/GPU cluster system efficiently is more difficult than efficiently utilizing the multicore cluster system. We implemented the tile CAQR decomposition algorithm on the CPU/GPU cluster system with OpenMP 4.0, MPI and cuBLAS, and proposed new approaches to utilize GPUs efficiently. In this paper, we show the performance result of our implementation on the Reedbush-H heterogeneous supercomputer.\",\"PeriodicalId\":413836,\"journal\":{\"name\":\"2018 IEEE 12th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC)\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 12th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MCSoC2018.2018.00031\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 12th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MCSoC2018.2018.00031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

矩阵分解的tile算法作为最新的多核/多核架构的一种方法,因为它可以生成许多可以并行执行的细粒度任务而受到关注。使用fork-join范式有效地利用许多并行计算资源是很困难的。CPU/GPU异构集群系统是近年来超级计算机系统的主流。有效地利用CPU/GPU集群系统比有效地利用多核集群系统更困难。利用openmp4.0、MPI和cuBLAS在CPU/GPU集群系统上实现了tile CAQR分解算法,并提出了高效利用GPU的新方法。在本文中,我们展示了我们在Reedbush-H异构超级计算机上实现的性能结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Communication-Avoiding Tile QR Decomposition on CPU/GPU Heterogeneous Cluster System
The tile algorithm for matrix decompositions is attracting attention as a method for the latest multicore/many-core architecture because it can generate many fine-grained tasks which can be executed in parallel. Exploiting many parallel computing resources effectively with a fork-join paradigm is difficult. CPU/GPU heterogeneous cluster system is mainstream for a supercomputer system in recent years. Using the CPU/GPU cluster system efficiently is more difficult than efficiently utilizing the multicore cluster system. We implemented the tile CAQR decomposition algorithm on the CPU/GPU cluster system with OpenMP 4.0, MPI and cuBLAS, and proposed new approaches to utilize GPUs efficiently. In this paper, we show the performance result of our implementation on the Reedbush-H heterogeneous supercomputer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信