由infoGan提供的无监督发音流利度评分

Wenwei Dong, Yanlu Xie, Binghuai Lin
{"title":"由infoGan提供的无监督发音流利度评分","authors":"Wenwei Dong, Yanlu Xie, Binghuai Lin","doi":"10.1109/APSIPAASC47483.2019.9023010","DOIUrl":null,"url":null,"abstract":"Pronunciation fluency scoring (PFS) is a primary task in computer-aided second language (L2) learning. Most of existing PFS algorithms are based on supervised learning, where human-labeled scores are used to train the scoring model. However, the human labeling is rather costly and tends to be biased. In order to tackle this problem, we propose an unsupervised learning approach, where an infoGan model is constructed to infer latent speech codes, and then these codes are used to build a classifier that distinguishes native and foreign speech. We found that this native-foreign classifier can generate good utterance-based fluency scores.","PeriodicalId":145222,"journal":{"name":"2019 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Unsupervised Pronunciation Fluency Scoring by infoGan\",\"authors\":\"Wenwei Dong, Yanlu Xie, Binghuai Lin\",\"doi\":\"10.1109/APSIPAASC47483.2019.9023010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pronunciation fluency scoring (PFS) is a primary task in computer-aided second language (L2) learning. Most of existing PFS algorithms are based on supervised learning, where human-labeled scores are used to train the scoring model. However, the human labeling is rather costly and tends to be biased. In order to tackle this problem, we propose an unsupervised learning approach, where an infoGan model is constructed to infer latent speech codes, and then these codes are used to build a classifier that distinguishes native and foreign speech. We found that this native-foreign classifier can generate good utterance-based fluency scores.\",\"PeriodicalId\":145222,\"journal\":{\"name\":\"2019 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APSIPAASC47483.2019.9023010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APSIPAASC47483.2019.9023010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

语音流利度评分(PFS)是计算机辅助第二语言(L2)学习的一项重要任务。大多数现有的PFS算法都是基于监督学习的,其中人类标记的分数被用来训练评分模型。然而,人工标注是相当昂贵的,而且往往是有偏见的。为了解决这个问题,我们提出了一种无监督学习方法,其中构建一个信息gan模型来推断潜在的语音代码,然后使用这些代码构建一个分类器来区分母语和外语语音。我们发现这种母语-外语分类器可以产生良好的基于话语的流利性分数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unsupervised Pronunciation Fluency Scoring by infoGan
Pronunciation fluency scoring (PFS) is a primary task in computer-aided second language (L2) learning. Most of existing PFS algorithms are based on supervised learning, where human-labeled scores are used to train the scoring model. However, the human labeling is rather costly and tends to be biased. In order to tackle this problem, we propose an unsupervised learning approach, where an infoGan model is constructed to infer latent speech codes, and then these codes are used to build a classifier that distinguishes native and foreign speech. We found that this native-foreign classifier can generate good utterance-based fluency scores.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信