分布式虚拟环境的热区定位航位推算

Youfu Chen, Wentong Cai, Elvis S. Liu
{"title":"分布式虚拟环境的热区定位航位推算","authors":"Youfu Chen, Wentong Cai, Elvis S. Liu","doi":"10.1145/3437959.3459260","DOIUrl":null,"url":null,"abstract":"Dead reckoning (DR) is a key technique to increase scalability in Distributed Virtual Environments (DVE). Replacing data transmission with prediction, DR relies on its prediction capability to reduce the bandwidth consumption in the cost of inconsistency among participants. We propose a hot area targeting DR (HATDR) approach to increase the prediction capability by the hot area targeting pattern discovered with a noise-resistant clustering approach. This approach is shown to be robust against hyperparameters. Experiments carried out with a real-life MMOG dataset show that HATDR is comparable to the state-of-the-art DR approaches.","PeriodicalId":169025,"journal":{"name":"Proceedings of the 2021 ACM SIGSIM Conference on Principles of Advanced Discrete Simulation","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hot Area Targeting Dead Reckoning for Distributed Virtual Environments\",\"authors\":\"Youfu Chen, Wentong Cai, Elvis S. Liu\",\"doi\":\"10.1145/3437959.3459260\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dead reckoning (DR) is a key technique to increase scalability in Distributed Virtual Environments (DVE). Replacing data transmission with prediction, DR relies on its prediction capability to reduce the bandwidth consumption in the cost of inconsistency among participants. We propose a hot area targeting DR (HATDR) approach to increase the prediction capability by the hot area targeting pattern discovered with a noise-resistant clustering approach. This approach is shown to be robust against hyperparameters. Experiments carried out with a real-life MMOG dataset show that HATDR is comparable to the state-of-the-art DR approaches.\",\"PeriodicalId\":169025,\"journal\":{\"name\":\"Proceedings of the 2021 ACM SIGSIM Conference on Principles of Advanced Discrete Simulation\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2021 ACM SIGSIM Conference on Principles of Advanced Discrete Simulation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3437959.3459260\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 ACM SIGSIM Conference on Principles of Advanced Discrete Simulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3437959.3459260","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在分布式虚拟环境(DVE)中,航位推算(DR)是提高可扩展性的关键技术。用预测代替数据传输,DR依靠其预测能力来减少参与者之间不一致的代价中的带宽消耗。我们提出了一种热区瞄准DR (HATDR)方法,通过抗噪声聚类方法发现的热区瞄准模式来提高预测能力。该方法对超参数具有鲁棒性。用真实的MMOG数据集进行的实验表明,HATDR可以与最先进的DR方法相媲美。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hot Area Targeting Dead Reckoning for Distributed Virtual Environments
Dead reckoning (DR) is a key technique to increase scalability in Distributed Virtual Environments (DVE). Replacing data transmission with prediction, DR relies on its prediction capability to reduce the bandwidth consumption in the cost of inconsistency among participants. We propose a hot area targeting DR (HATDR) approach to increase the prediction capability by the hot area targeting pattern discovered with a noise-resistant clustering approach. This approach is shown to be robust against hyperparameters. Experiments carried out with a real-life MMOG dataset show that HATDR is comparable to the state-of-the-art DR approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信