基于熵的目标识别主动学习

Alex Holub, P. Perona, M. Burl
{"title":"基于熵的目标识别主动学习","authors":"Alex Holub, P. Perona, M. Burl","doi":"10.1109/CVPRW.2008.4563068","DOIUrl":null,"url":null,"abstract":"Most methods for learning object categories require large amounts of labeled training data. However, obtaining such data can be a difficult and time-consuming endeavor. We have developed a novel, entropy-based ldquoactive learningrdquo approach which makes significant progress towards this problem. The main idea is to sequentially acquire labeled data by presenting an oracle (the user) with unlabeled images that will be particularly informative when labeled. Active learning adaptively prioritizes the order in which the training examples are acquired, which, as shown by our experiments, can significantly reduce the overall number of training examples required to reach near-optimal performance. At first glance this may seem counter-intuitive: how can the algorithm know whether a group of unlabeled images will be informative, when, by definition, there is no label directly associated with any of the images? Our approach is based on choosing an image to label that maximizes the expected amount of information we gain about the set of unlabeled images. The technique is demonstrated in several contexts, including improving the efficiency of Web image-search queries and open-world visual learning by an autonomous agent. Experiments on a large set of 140 visual object categories taken directly from text-based Web image searches show that our technique can provide large improvements (up to 10 x reduction in the number of training examples needed) over baseline techniques.","PeriodicalId":102206,"journal":{"name":"2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"252","resultStr":"{\"title\":\"Entropy-based active learning for object recognition\",\"authors\":\"Alex Holub, P. Perona, M. Burl\",\"doi\":\"10.1109/CVPRW.2008.4563068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most methods for learning object categories require large amounts of labeled training data. However, obtaining such data can be a difficult and time-consuming endeavor. We have developed a novel, entropy-based ldquoactive learningrdquo approach which makes significant progress towards this problem. The main idea is to sequentially acquire labeled data by presenting an oracle (the user) with unlabeled images that will be particularly informative when labeled. Active learning adaptively prioritizes the order in which the training examples are acquired, which, as shown by our experiments, can significantly reduce the overall number of training examples required to reach near-optimal performance. At first glance this may seem counter-intuitive: how can the algorithm know whether a group of unlabeled images will be informative, when, by definition, there is no label directly associated with any of the images? Our approach is based on choosing an image to label that maximizes the expected amount of information we gain about the set of unlabeled images. The technique is demonstrated in several contexts, including improving the efficiency of Web image-search queries and open-world visual learning by an autonomous agent. Experiments on a large set of 140 visual object categories taken directly from text-based Web image searches show that our technique can provide large improvements (up to 10 x reduction in the number of training examples needed) over baseline techniques.\",\"PeriodicalId\":102206,\"journal\":{\"name\":\"2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"252\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPRW.2008.4563068\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW.2008.4563068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 252

摘要

大多数学习对象分类的方法都需要大量的标记训练数据。然而,获得这样的数据可能是一项困难且耗时的工作。我们开发了一种新颖的、基于熵的交互式学习方法,在这个问题上取得了重大进展。其主要思想是通过向oracle(用户)展示未标记的图像来顺序获取标记的数据,这些图像在标记后将具有特别的信息。主动学习自适应地优先考虑获得训练样例的顺序,正如我们的实验所示,这可以显着减少达到接近最佳性能所需的训练样例总数。乍一看,这似乎是违反直觉的:算法如何知道一组未标记的图像是否有信息,当,根据定义,没有标签直接与任何图像相关联?我们的方法是基于选择一个图像来标记,使我们获得的关于未标记图像集的预期信息量最大化。该技术在几个环境中进行了演示,包括提高Web图像搜索查询的效率和自主代理的开放世界视觉学习。在直接从基于文本的Web图像搜索中获取的140个视觉对象类别的大集合上进行的实验表明,与基线技术相比,我们的技术可以提供很大的改进(所需训练示例的数量减少了10倍)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Entropy-based active learning for object recognition
Most methods for learning object categories require large amounts of labeled training data. However, obtaining such data can be a difficult and time-consuming endeavor. We have developed a novel, entropy-based ldquoactive learningrdquo approach which makes significant progress towards this problem. The main idea is to sequentially acquire labeled data by presenting an oracle (the user) with unlabeled images that will be particularly informative when labeled. Active learning adaptively prioritizes the order in which the training examples are acquired, which, as shown by our experiments, can significantly reduce the overall number of training examples required to reach near-optimal performance. At first glance this may seem counter-intuitive: how can the algorithm know whether a group of unlabeled images will be informative, when, by definition, there is no label directly associated with any of the images? Our approach is based on choosing an image to label that maximizes the expected amount of information we gain about the set of unlabeled images. The technique is demonstrated in several contexts, including improving the efficiency of Web image-search queries and open-world visual learning by an autonomous agent. Experiments on a large set of 140 visual object categories taken directly from text-based Web image searches show that our technique can provide large improvements (up to 10 x reduction in the number of training examples needed) over baseline techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信