钢铁行业发展前景核算生态制约因素

S. V. Nedelin
{"title":"钢铁行业发展前景核算生态制约因素","authors":"S. V. Nedelin","doi":"10.32339/0135-5910-2021-8-936-942","DOIUrl":null,"url":null,"abstract":"Discussion of many years on consequences of man’s activity effect on environment at present moved to a practical aspect. New ecological and economical limits dictate a necessity to reduce the carbon intensity of metallurgical processes. It was noted that the technological couple “blast furnace – basic oxygen furnace” is a basic method of steel production, based on utilization of coke as a fuel and reducing component. Distribution of metallurgical capacities by types of fuel used shown, which confirms application of carbon-containing fuel-reducing additions in overwhelming majority of technological processes of iron production. Data on projects reducing carbon intensity of metallurgical industry presented, most of which aimed at changing the technology of BF process. Experience of steel industry of Japan on perfection machinery and technology of BF production considered, which enabled to reduce total consumption of reducing agents down to figure less down to 450 kg/t of hot metal, which is the best index among countries of the world. It was shown that increase of a blast furnace volume results in change of BF process technology. Such an increase also results in decrease of carbon consumption – blast furnaces of large volume have lower specific consumption of fuel and reducing agent. The specific coke rate in blast furnaces of large volume is by 71 kg/t of hot metal less comparing with blast furnaces having volume less 1000 m3, and the total fuel consumption in large blast furnaces is by 51 kg/t of hot metal lower. Accounting necessity to decrease the carbon footprint in steel products, basic ways of steel industry technologies development can be enlargement of facilities with shutdown of small and not effective capacities, changing sinter and BF charges structure with increase of more qualitative raw materials and pellets, application of alternative kinds of fuel and reducing additions.","PeriodicalId":259995,"journal":{"name":"Ferrous Metallurgy. Bulletin of Scientific , Technical and Economic Information","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Prospects of steel industry development accounting ecological restrictions\",\"authors\":\"S. V. Nedelin\",\"doi\":\"10.32339/0135-5910-2021-8-936-942\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Discussion of many years on consequences of man’s activity effect on environment at present moved to a practical aspect. New ecological and economical limits dictate a necessity to reduce the carbon intensity of metallurgical processes. It was noted that the technological couple “blast furnace – basic oxygen furnace” is a basic method of steel production, based on utilization of coke as a fuel and reducing component. Distribution of metallurgical capacities by types of fuel used shown, which confirms application of carbon-containing fuel-reducing additions in overwhelming majority of technological processes of iron production. Data on projects reducing carbon intensity of metallurgical industry presented, most of which aimed at changing the technology of BF process. Experience of steel industry of Japan on perfection machinery and technology of BF production considered, which enabled to reduce total consumption of reducing agents down to figure less down to 450 kg/t of hot metal, which is the best index among countries of the world. It was shown that increase of a blast furnace volume results in change of BF process technology. Such an increase also results in decrease of carbon consumption – blast furnaces of large volume have lower specific consumption of fuel and reducing agent. The specific coke rate in blast furnaces of large volume is by 71 kg/t of hot metal less comparing with blast furnaces having volume less 1000 m3, and the total fuel consumption in large blast furnaces is by 51 kg/t of hot metal lower. Accounting necessity to decrease the carbon footprint in steel products, basic ways of steel industry technologies development can be enlargement of facilities with shutdown of small and not effective capacities, changing sinter and BF charges structure with increase of more qualitative raw materials and pellets, application of alternative kinds of fuel and reducing additions.\",\"PeriodicalId\":259995,\"journal\":{\"name\":\"Ferrous Metallurgy. Bulletin of Scientific , Technical and Economic Information\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ferrous Metallurgy. Bulletin of Scientific , Technical and Economic Information\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32339/0135-5910-2021-8-936-942\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ferrous Metallurgy. Bulletin of Scientific , Technical and Economic Information","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32339/0135-5910-2021-8-936-942","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

多年来关于人类活动对环境影响的后果的讨论目前转向了实际方面。新的生态和经济限制规定了降低冶金过程碳强度的必要性。指出“高炉-碱性氧炉”技术组合是一种以焦炭为燃料和还原性组分为基础的基本炼钢方法。所示的按所用燃料类型划分的冶金能力分布,证实了在绝大多数铁生产技术过程中都应用了含碳减燃添加剂。介绍了冶金工业降低碳强度项目的数据,其中大部分项目旨在改变高炉工艺技术。考虑到日本钢铁工业在完善高炉生产机械和技术方面的经验,使还原剂的总消耗量降至450 kg/t,在世界各国中是最好的。结果表明,高炉体积的增大会引起高炉工艺技术的变化。这种增加也导致了碳消耗的减少——大容量高炉的燃料和还原剂的比消耗更低。大容量高炉的比焦化率比小于1000 m3的高炉低71 kg/t铁水,大容量高炉的总燃料消耗比小于1000 m3的高炉低51 kg/t铁水。考虑到减少钢铁产品碳足迹的必要性,钢铁工业技术发展的基本途径可以是扩大设施,关闭小而无效的产能,改变烧结和高炉炉料结构,增加更多质量的原料和球团,应用替代燃料和减少添加物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prospects of steel industry development accounting ecological restrictions
Discussion of many years on consequences of man’s activity effect on environment at present moved to a practical aspect. New ecological and economical limits dictate a necessity to reduce the carbon intensity of metallurgical processes. It was noted that the technological couple “blast furnace – basic oxygen furnace” is a basic method of steel production, based on utilization of coke as a fuel and reducing component. Distribution of metallurgical capacities by types of fuel used shown, which confirms application of carbon-containing fuel-reducing additions in overwhelming majority of technological processes of iron production. Data on projects reducing carbon intensity of metallurgical industry presented, most of which aimed at changing the technology of BF process. Experience of steel industry of Japan on perfection machinery and technology of BF production considered, which enabled to reduce total consumption of reducing agents down to figure less down to 450 kg/t of hot metal, which is the best index among countries of the world. It was shown that increase of a blast furnace volume results in change of BF process technology. Such an increase also results in decrease of carbon consumption – blast furnaces of large volume have lower specific consumption of fuel and reducing agent. The specific coke rate in blast furnaces of large volume is by 71 kg/t of hot metal less comparing with blast furnaces having volume less 1000 m3, and the total fuel consumption in large blast furnaces is by 51 kg/t of hot metal lower. Accounting necessity to decrease the carbon footprint in steel products, basic ways of steel industry technologies development can be enlargement of facilities with shutdown of small and not effective capacities, changing sinter and BF charges structure with increase of more qualitative raw materials and pellets, application of alternative kinds of fuel and reducing additions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信