2.1声子

G. Eckold
{"title":"2.1声子","authors":"G. Eckold","doi":"10.1107/97809553602060000911","DOIUrl":null,"url":null,"abstract":"This chapter is devoted to the implications of lattice symmetry on the form, i.e. on the eigenvectors, of lattice vibrations. It is restricted to the consideration of perfect crystals and harmonic vibrations. In addition, some aspects of anharmonicity are discussed in terms of a quasi-harmonic model, yielding the connection between microscopic dynamics and macroscopic thermodynamic quantities such as thermal expansion. In Section 2.1.2, the fundamentals of lattice dynamics are presented, with special emphasis on the role of the dynamical matrix. Section 2.1.3 deals with the symmetry properties of this matrix along with its eigenvectors and eigenfrequencies. \n \n \nKeywords: \n \nDebye model; \nDebye temperature; \nGruneisen parameter; \nHamiltonian; \nRaman spectroscopy; \nacoustic branches; \nacoustic modes; \nanharmonicity; \ncompatibility relations; \ncompressibility; \ndegeneracy; \ndispersion curves; \ndynamical matrix; \nforce constants; \nharmonic approximation; \nheat capacity; \nirreducible representations; \nlattice dynamics; \nnormal coordinates; \nphonon dispersion; \nphonons; \nselection rules; \nthermal expansion; \ntime-reversal degeneracy","PeriodicalId":338076,"journal":{"name":"International Tables for Crystallography","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"2.1 Phonons\",\"authors\":\"G. Eckold\",\"doi\":\"10.1107/97809553602060000911\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This chapter is devoted to the implications of lattice symmetry on the form, i.e. on the eigenvectors, of lattice vibrations. It is restricted to the consideration of perfect crystals and harmonic vibrations. In addition, some aspects of anharmonicity are discussed in terms of a quasi-harmonic model, yielding the connection between microscopic dynamics and macroscopic thermodynamic quantities such as thermal expansion. In Section 2.1.2, the fundamentals of lattice dynamics are presented, with special emphasis on the role of the dynamical matrix. Section 2.1.3 deals with the symmetry properties of this matrix along with its eigenvectors and eigenfrequencies. \\n \\n \\nKeywords: \\n \\nDebye model; \\nDebye temperature; \\nGruneisen parameter; \\nHamiltonian; \\nRaman spectroscopy; \\nacoustic branches; \\nacoustic modes; \\nanharmonicity; \\ncompatibility relations; \\ncompressibility; \\ndegeneracy; \\ndispersion curves; \\ndynamical matrix; \\nforce constants; \\nharmonic approximation; \\nheat capacity; \\nirreducible representations; \\nlattice dynamics; \\nnormal coordinates; \\nphonon dispersion; \\nphonons; \\nselection rules; \\nthermal expansion; \\ntime-reversal degeneracy\",\"PeriodicalId\":338076,\"journal\":{\"name\":\"International Tables for Crystallography\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Tables for Crystallography\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1107/97809553602060000911\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Tables for Crystallography","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1107/97809553602060000911","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本章专门讨论晶格对称对晶格振动的形式,即特征向量的影响。它仅限于考虑完美晶体和谐波振动。此外,用准调和模型讨论了非调和性的某些方面,得出了微观动力学和宏观热力学量(如热膨胀)之间的联系。在第2.1.2节中,介绍了晶格动力学的基本原理,特别强调了动态矩阵的作用。第2.1.3节讨论了这个矩阵的对称性以及它的特征向量和特征频率。关键词:德拜模型;德拜温度;格吕奈森参数;哈密顿;拉曼光谱;声分支;声学模式;非简谐振动;兼容性关系;压缩系数;简并;色散曲线;动态矩阵;力常数;谐波近似;热容;不可约表示;点阵动力学;正常的坐标;声子色散;声子;选择规则;热膨胀;逆时简并度
本文章由计算机程序翻译,如有差异,请以英文原文为准。
2.1 Phonons
This chapter is devoted to the implications of lattice symmetry on the form, i.e. on the eigenvectors, of lattice vibrations. It is restricted to the consideration of perfect crystals and harmonic vibrations. In addition, some aspects of anharmonicity are discussed in terms of a quasi-harmonic model, yielding the connection between microscopic dynamics and macroscopic thermodynamic quantities such as thermal expansion. In Section 2.1.2, the fundamentals of lattice dynamics are presented, with special emphasis on the role of the dynamical matrix. Section 2.1.3 deals with the symmetry properties of this matrix along with its eigenvectors and eigenfrequencies. Keywords: Debye model; Debye temperature; Gruneisen parameter; Hamiltonian; Raman spectroscopy; acoustic branches; acoustic modes; anharmonicity; compatibility relations; compressibility; degeneracy; dispersion curves; dynamical matrix; force constants; harmonic approximation; heat capacity; irreducible representations; lattice dynamics; normal coordinates; phonon dispersion; phonons; selection rules; thermal expansion; time-reversal degeneracy
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信