趋势变化的有效半参数检测

Chuan Goh
{"title":"趋势变化的有效半参数检测","authors":"Chuan Goh","doi":"10.2139/ssrn.1142744","DOIUrl":null,"url":null,"abstract":"This paper proposes a test for the correct specification of a dynamic time-series model that is taken to be stationary about a deterministic linear trend function with no more than a finite number of discontinuities in the vector of trend coefficients. The test avoids the consideration of explicit alternatives to the null of trend stability. The proposal also does not involve the detailed modelling of the data-generating process of the stochastic component, which is simply assumed to satisfy a certain strong invariance principle for stationary causal processes taking a general form. As such, the resulting inference procedure is effectively an omnibus specification test for segmented linear trend stationarity. The test is of Wald-type, and is based on an asymptotically linear estimator of the vector of total-variation norms of the trend parameters whose influence function coincides with the efficient influence function. Simulations illustrate the utility of this procedure to detect discrete breaks or continuous variation in the trend parameter as well as alternatives where the trend coefficients change randomly each period. This paper also includes an application examining the adequacy of a linear trend-stationary specification with infrequent trend breaks for the historical evolution of U.S. real output.","PeriodicalId":425229,"journal":{"name":"ERN: Hypothesis Testing (Topic)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient Semiparametric Detection of Changes in Trend\",\"authors\":\"Chuan Goh\",\"doi\":\"10.2139/ssrn.1142744\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a test for the correct specification of a dynamic time-series model that is taken to be stationary about a deterministic linear trend function with no more than a finite number of discontinuities in the vector of trend coefficients. The test avoids the consideration of explicit alternatives to the null of trend stability. The proposal also does not involve the detailed modelling of the data-generating process of the stochastic component, which is simply assumed to satisfy a certain strong invariance principle for stationary causal processes taking a general form. As such, the resulting inference procedure is effectively an omnibus specification test for segmented linear trend stationarity. The test is of Wald-type, and is based on an asymptotically linear estimator of the vector of total-variation norms of the trend parameters whose influence function coincides with the efficient influence function. Simulations illustrate the utility of this procedure to detect discrete breaks or continuous variation in the trend parameter as well as alternatives where the trend coefficients change randomly each period. This paper also includes an application examining the adequacy of a linear trend-stationary specification with infrequent trend breaks for the historical evolution of U.S. real output.\",\"PeriodicalId\":425229,\"journal\":{\"name\":\"ERN: Hypothesis Testing (Topic)\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Hypothesis Testing (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.1142744\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Hypothesis Testing (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.1142744","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种检验动态时间序列模型的正确规范的方法,该模型被认为是关于一个确定性线性趋势函数的平稳,其趋势系数向量中不超过有限个不连续点。该检验避免了对趋势稳定性null的显式替代的考虑。该建议也不涉及随机分量的数据生成过程的详细建模,简单地假设它满足一般形式的平稳因果过程的某种强不变性原则。因此,由此产生的推理过程是有效的对分段线性趋势平稳性的综合规范检验。该检验是wald型的,它是基于影响函数与有效影响函数重合的趋势参数的总变差范数向量的渐近线性估计。模拟说明了该程序在检测趋势参数中的离散中断或连续变化以及趋势系数每个周期随机变化的替代方案方面的实用性。本文还包括一个应用程序,检查了美国实际产出历史演变中不频繁趋势中断的线性趋势平稳规范的充分性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient Semiparametric Detection of Changes in Trend
This paper proposes a test for the correct specification of a dynamic time-series model that is taken to be stationary about a deterministic linear trend function with no more than a finite number of discontinuities in the vector of trend coefficients. The test avoids the consideration of explicit alternatives to the null of trend stability. The proposal also does not involve the detailed modelling of the data-generating process of the stochastic component, which is simply assumed to satisfy a certain strong invariance principle for stationary causal processes taking a general form. As such, the resulting inference procedure is effectively an omnibus specification test for segmented linear trend stationarity. The test is of Wald-type, and is based on an asymptotically linear estimator of the vector of total-variation norms of the trend parameters whose influence function coincides with the efficient influence function. Simulations illustrate the utility of this procedure to detect discrete breaks or continuous variation in the trend parameter as well as alternatives where the trend coefficients change randomly each period. This paper also includes an application examining the adequacy of a linear trend-stationary specification with infrequent trend breaks for the historical evolution of U.S. real output.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信