A. Danilyuk, V. Shaposhnikov, A. Filonov, V. M. Anischik, V. Uglov, Аndrew K. Kuleshov, Мaxim A. Danilyuk
{"title":"过渡金属氮化物纳米结构涂层的力学性能和残余应力模拟","authors":"A. Danilyuk, V. Shaposhnikov, A. Filonov, V. M. Anischik, V. Uglov, Аndrew K. Kuleshov, Мaxim A. Danilyuk","doi":"10.1117/12.836982","DOIUrl":null,"url":null,"abstract":"Physical properties of novel nanostructural coatings, formed by ion-plasmous flux from solid solutions of transition and refractory metals (Ti, Zr, Cr) have been intensively studied to enhance characteristics of tool materials. We have developed the modeling technique for effective predictions of internal stresses and calculation of elastic properties of nanostructural coatings composed of metal nitrides. Quantum-mechanical modeling of microstructure, elastic constants, bulk modulus and residual stress for binary and ternary metal nitride clusters have been performed. The dependences of these characteristics on the crystal structure deformations have been investigated. The essential modification of elastic constants and bulk moduli with changes in lattice constants and stoichiometric composition has been observed. The influence of elastically stressed state of sample on X-ray diffraction intensity has been examined by using the exponential model. The model of residual stress distribution identifying in depth of wear-resistant nanostructural coating from the data of diffraction experiments has been developed.","PeriodicalId":117315,"journal":{"name":"Nanodesign, Technology, and Computer Simulations","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulation of mechanical properties and residual stress of nanostructural coatings based on transition metals nitrides\",\"authors\":\"A. Danilyuk, V. Shaposhnikov, A. Filonov, V. M. Anischik, V. Uglov, Аndrew K. Kuleshov, Мaxim A. Danilyuk\",\"doi\":\"10.1117/12.836982\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Physical properties of novel nanostructural coatings, formed by ion-plasmous flux from solid solutions of transition and refractory metals (Ti, Zr, Cr) have been intensively studied to enhance characteristics of tool materials. We have developed the modeling technique for effective predictions of internal stresses and calculation of elastic properties of nanostructural coatings composed of metal nitrides. Quantum-mechanical modeling of microstructure, elastic constants, bulk modulus and residual stress for binary and ternary metal nitride clusters have been performed. The dependences of these characteristics on the crystal structure deformations have been investigated. The essential modification of elastic constants and bulk moduli with changes in lattice constants and stoichiometric composition has been observed. The influence of elastically stressed state of sample on X-ray diffraction intensity has been examined by using the exponential model. The model of residual stress distribution identifying in depth of wear-resistant nanostructural coating from the data of diffraction experiments has been developed.\",\"PeriodicalId\":117315,\"journal\":{\"name\":\"Nanodesign, Technology, and Computer Simulations\",\"volume\":\"65 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanodesign, Technology, and Computer Simulations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.836982\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanodesign, Technology, and Computer Simulations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.836982","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Simulation of mechanical properties and residual stress of nanostructural coatings based on transition metals nitrides
Physical properties of novel nanostructural coatings, formed by ion-plasmous flux from solid solutions of transition and refractory metals (Ti, Zr, Cr) have been intensively studied to enhance characteristics of tool materials. We have developed the modeling technique for effective predictions of internal stresses and calculation of elastic properties of nanostructural coatings composed of metal nitrides. Quantum-mechanical modeling of microstructure, elastic constants, bulk modulus and residual stress for binary and ternary metal nitride clusters have been performed. The dependences of these characteristics on the crystal structure deformations have been investigated. The essential modification of elastic constants and bulk moduli with changes in lattice constants and stoichiometric composition has been observed. The influence of elastically stressed state of sample on X-ray diffraction intensity has been examined by using the exponential model. The model of residual stress distribution identifying in depth of wear-resistant nanostructural coating from the data of diffraction experiments has been developed.