R. Mansour, Oluwaseun Omoniyi, R. O’Leary, J. Windmill
{"title":"传感器和执行器用紫外固化压电复合材料的制备","authors":"R. Mansour, Oluwaseun Omoniyi, R. O’Leary, J. Windmill","doi":"10.1109/ICSENS.2018.8589943","DOIUrl":null,"url":null,"abstract":"In this work, we give a detailed examination of the development of a new piezoelectric ceramic-polymer composite. A full account of the major methods developed in making the polymer composite is presented. Norland Optical Adhesive 65 (“NOA65”) is an ultraviolet (UV)-curable adhesive with potential to be used as a functional material in stereolithography additive manufacturing. The salient aspects of processing such a composite is summarized. This involved preparing samples by using the spin coating technique. Samples of the composite mixture are spin coated on silver-coated glass slides at 2000 rpm for 10s to give a layer thickness of 100μm. The average $\\pmb d_{33}$ of the composite material was measured and shown to be 2.8 pm/V.","PeriodicalId":405874,"journal":{"name":"2018 IEEE SENSORS","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Fabrication of Ultraviolet-Curable Piezoelectric Composite for Sensor and Actuator Applications\",\"authors\":\"R. Mansour, Oluwaseun Omoniyi, R. O’Leary, J. Windmill\",\"doi\":\"10.1109/ICSENS.2018.8589943\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we give a detailed examination of the development of a new piezoelectric ceramic-polymer composite. A full account of the major methods developed in making the polymer composite is presented. Norland Optical Adhesive 65 (“NOA65”) is an ultraviolet (UV)-curable adhesive with potential to be used as a functional material in stereolithography additive manufacturing. The salient aspects of processing such a composite is summarized. This involved preparing samples by using the spin coating technique. Samples of the composite mixture are spin coated on silver-coated glass slides at 2000 rpm for 10s to give a layer thickness of 100μm. The average $\\\\pmb d_{33}$ of the composite material was measured and shown to be 2.8 pm/V.\",\"PeriodicalId\":405874,\"journal\":{\"name\":\"2018 IEEE SENSORS\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE SENSORS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSENS.2018.8589943\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE SENSORS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSENS.2018.8589943","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fabrication of Ultraviolet-Curable Piezoelectric Composite for Sensor and Actuator Applications
In this work, we give a detailed examination of the development of a new piezoelectric ceramic-polymer composite. A full account of the major methods developed in making the polymer composite is presented. Norland Optical Adhesive 65 (“NOA65”) is an ultraviolet (UV)-curable adhesive with potential to be used as a functional material in stereolithography additive manufacturing. The salient aspects of processing such a composite is summarized. This involved preparing samples by using the spin coating technique. Samples of the composite mixture are spin coated on silver-coated glass slides at 2000 rpm for 10s to give a layer thickness of 100μm. The average $\pmb d_{33}$ of the composite material was measured and shown to be 2.8 pm/V.