自主医疗咨询系统的信任量化

Mini Thomas, Reza Samavi, Thomas E. Doyle
{"title":"自主医疗咨询系统的信任量化","authors":"Mini Thomas, Reza Samavi, Thomas E. Doyle","doi":"10.1109/PST52912.2021.9647818","DOIUrl":null,"url":null,"abstract":"Autonomous Medical Advisory Systems (AMAS) integrate sensors and implement learning technologies to provide intelligent and real-time recommendations. In this paper, we propose a formal framework for quantifying trust using the Bayesian network for the sensor layer of AMAS systems. First, we identify the various factors influencing trust in this context. We make the factors granular enough such that the probability of the trust for the factor to be in a specific state can be measured. Then, using a probabilistic graphical model, we impose a compact structure to the identified factors such that the posterior probability of the trustworthiness of the entire system or its constituents can be computed. Parameterized cases of Bayesian network are simulated in MATLAB to demonstrate the applicability and scalability of the model for trust inference.","PeriodicalId":144610,"journal":{"name":"2021 18th International Conference on Privacy, Security and Trust (PST)","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Trust Quantification for Autonomous Medical Advisory Systems\",\"authors\":\"Mini Thomas, Reza Samavi, Thomas E. Doyle\",\"doi\":\"10.1109/PST52912.2021.9647818\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Autonomous Medical Advisory Systems (AMAS) integrate sensors and implement learning technologies to provide intelligent and real-time recommendations. In this paper, we propose a formal framework for quantifying trust using the Bayesian network for the sensor layer of AMAS systems. First, we identify the various factors influencing trust in this context. We make the factors granular enough such that the probability of the trust for the factor to be in a specific state can be measured. Then, using a probabilistic graphical model, we impose a compact structure to the identified factors such that the posterior probability of the trustworthiness of the entire system or its constituents can be computed. Parameterized cases of Bayesian network are simulated in MATLAB to demonstrate the applicability and scalability of the model for trust inference.\",\"PeriodicalId\":144610,\"journal\":{\"name\":\"2021 18th International Conference on Privacy, Security and Trust (PST)\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 18th International Conference on Privacy, Security and Trust (PST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PST52912.2021.9647818\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 18th International Conference on Privacy, Security and Trust (PST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PST52912.2021.9647818","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

自主医疗咨询系统(AMAS)集成了传感器和学习技术,提供智能和实时的建议。本文提出了一种基于贝叶斯网络的AMAS系统传感器层信任量化的形式化框架。首先,我们确定了在此背景下影响信任的各种因素。我们使因子足够细粒度,以便可以测量因子处于特定状态的信任概率。然后,使用概率图模型,我们对识别的因素施加紧凑的结构,从而可以计算整个系统或其组成部分的可信度的后验概率。在MATLAB中对贝叶斯网络的参数化情况进行了仿真,验证了该模型在信任推理中的适用性和可扩展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Trust Quantification for Autonomous Medical Advisory Systems
Autonomous Medical Advisory Systems (AMAS) integrate sensors and implement learning technologies to provide intelligent and real-time recommendations. In this paper, we propose a formal framework for quantifying trust using the Bayesian network for the sensor layer of AMAS systems. First, we identify the various factors influencing trust in this context. We make the factors granular enough such that the probability of the trust for the factor to be in a specific state can be measured. Then, using a probabilistic graphical model, we impose a compact structure to the identified factors such that the posterior probability of the trustworthiness of the entire system or its constituents can be computed. Parameterized cases of Bayesian network are simulated in MATLAB to demonstrate the applicability and scalability of the model for trust inference.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信