混合质量蛋白质组数据分类的特征选择

E. Marchiori, N. Heegaard, C. Jiménez, Mikkel West-Nielsen
{"title":"混合质量蛋白质组数据分类的特征选择","authors":"E. Marchiori, N. Heegaard, C. Jiménez, Mikkel West-Nielsen","doi":"10.1109/CIBCB.2005.1594944","DOIUrl":null,"url":null,"abstract":"In this paper we assess experimentally the performance of two state-of-the-art feature selection methods, called RFE and RELIEF, when used for classifying pattern proteomic samples of mixed quality. The data are generated by spiking human sera to artificially create differentiable sample groups, and by handling samples at different storage temperature. We consider two type of classifiers: support vector machines (SVM) and k-nearest neighbour (kNN). Results of leave-one-out cross validation (LOOCV) experiments indicate that RELIEF selects more stable feature subsets than RFE over the runs, where the selected features are mainly spiked ones. However, RFE outperforms RELIEF in terms of (average LOOCV) accuracy, both when combined with SVM and kNN. Perfect LOOCV accuracy is obtained by RFE combined with 1NN. Almost all the samples that are wrongly classified by the algorithms have high storage temperature. The results of experiments on this data indicate that when samples of mixed quality are analyzed computationally, feature selection of only relevant (spiked) features does not necessarily correspond to highest accuracy of classification.","PeriodicalId":330810,"journal":{"name":"2005 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Feature Selection for Classification with Proteomic Data of Mixed Quality\",\"authors\":\"E. Marchiori, N. Heegaard, C. Jiménez, Mikkel West-Nielsen\",\"doi\":\"10.1109/CIBCB.2005.1594944\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we assess experimentally the performance of two state-of-the-art feature selection methods, called RFE and RELIEF, when used for classifying pattern proteomic samples of mixed quality. The data are generated by spiking human sera to artificially create differentiable sample groups, and by handling samples at different storage temperature. We consider two type of classifiers: support vector machines (SVM) and k-nearest neighbour (kNN). Results of leave-one-out cross validation (LOOCV) experiments indicate that RELIEF selects more stable feature subsets than RFE over the runs, where the selected features are mainly spiked ones. However, RFE outperforms RELIEF in terms of (average LOOCV) accuracy, both when combined with SVM and kNN. Perfect LOOCV accuracy is obtained by RFE combined with 1NN. Almost all the samples that are wrongly classified by the algorithms have high storage temperature. The results of experiments on this data indicate that when samples of mixed quality are analyzed computationally, feature selection of only relevant (spiked) features does not necessarily correspond to highest accuracy of classification.\",\"PeriodicalId\":330810,\"journal\":{\"name\":\"2005 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2005 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIBCB.2005.1594944\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIBCB.2005.1594944","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

在本文中,我们实验评估了两种最先进的特征选择方法的性能,称为RFE和RELIEF,当用于分类混合质量的模式蛋白质组学样本时。这些数据是通过在人类血清中添加峰值来人为地创建可区分的样本组,并在不同的储存温度下处理样本产生的。我们考虑两种类型的分类器:支持向量机(SVM)和k近邻(kNN)。留一交叉验证(LOOCV)实验结果表明,在运行过程中,RELIEF比RFE选择了更稳定的特征子集,其中选择的特征主要是尖峰特征。然而,当与SVM和kNN结合使用时,RFE在(平均LOOCV)精度方面优于RELIEF。RFE与1NN相结合,获得了较好的LOOCV精度。几乎所有被算法错误分类的样本都具有较高的存储温度。该数据的实验结果表明,当对混合质量的样本进行计算分析时,仅选择相关(加尖)特征并不一定对应于最高的分类精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Feature Selection for Classification with Proteomic Data of Mixed Quality
In this paper we assess experimentally the performance of two state-of-the-art feature selection methods, called RFE and RELIEF, when used for classifying pattern proteomic samples of mixed quality. The data are generated by spiking human sera to artificially create differentiable sample groups, and by handling samples at different storage temperature. We consider two type of classifiers: support vector machines (SVM) and k-nearest neighbour (kNN). Results of leave-one-out cross validation (LOOCV) experiments indicate that RELIEF selects more stable feature subsets than RFE over the runs, where the selected features are mainly spiked ones. However, RFE outperforms RELIEF in terms of (average LOOCV) accuracy, both when combined with SVM and kNN. Perfect LOOCV accuracy is obtained by RFE combined with 1NN. Almost all the samples that are wrongly classified by the algorithms have high storage temperature. The results of experiments on this data indicate that when samples of mixed quality are analyzed computationally, feature selection of only relevant (spiked) features does not necessarily correspond to highest accuracy of classification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信