页岩气滑脱现象的实气效应

Yufei Chen, J. Leung, Changbao Jiang, A. Wojtanowicz
{"title":"页岩气滑脱现象的实气效应","authors":"Yufei Chen, J. Leung, Changbao Jiang, A. Wojtanowicz","doi":"10.1115/omae2021-62684","DOIUrl":null,"url":null,"abstract":"\n The past decade has seen the rapid development of shale gas across the world, as the record-breaking success and on-going surge of commercial shale gas production in such unconventional reservoirs pose a tremendous potential to meet the global energy supply. However, questions have been raised about the intricate gas transport mechanisms in the shale matrix, of which the gas slippage phenomenon is one of the key mechanisms for enhancing the fluid transport capacity and, therefore, the overall gas production. Given that shale reservoirs are often naturally deposited in the deep underground formations at high pressure and temperature conditions (much deeper than most typical conventional deposits), the real gas effect cannot be ignored as gas properties may vary significantly under such conditions. The purpose of this study is thus to investigate the real gas effect on the gas slippage phenomenon in shale by taking into account the gas compressibility factor (Z) and Knudsen number (Kn).\n This study begins with a specific determination of Z for natural gas at various pressures and temperatures under the real gas effect, followed by several calculations of the gas molecular mean free path at in-situ conditions. Following this, the real gas effect on gas slippage phenomenon in shale is specifically analyzed by examining the change in Knudsen number. Also discussed are the permeability deviation from Darcy flux (non-Darcy flow) due to the combination of gas slippage and real gas effect and the specific range of pressure and pore size for gas slippage phenomenon in shale reservoirs.\n The results show that the gas molecular mean free path generally increases with decreasing pressure, especially at relatively low pressures (< 20 MPa). And, increasing temperature will cause the gas molecular mean free path to rise, also at low pressures. Knudsen number of an ideal gas is greater than that of a real gas; while lower than that of a real gas as pressure continues to rise. That is, the real gas effect suppresses the gas slippage phenomenon at low pressures, while enhancing it at high pressures. Also, Darcy’s law starts deviating when Kn > 0.01 and becomes invalid at high Knudsen numbers, and this deviation increases with decreasing pore size. No matter how pore size varies, this deviation increases with decreasing pressure, meaning that the gas slippage effect is significant at low pressures. Finally, slip flow dominates in the various gas transport mechanisms given the typical range of pressure and pore size in shale reservoirs (1 MPa < P < 80 MPa; 3 nm < d < 3000 nm). Gas transport in shale is predominantly controlled by the slippage effect that mostly occurs in micro- or meso-pores (10 to 200 nm). Moreover, considering the real gas effect would improve the accuracy for determining the specific pressure range of the gas slippage phenomenon in shale.","PeriodicalId":363084,"journal":{"name":"Volume 10: Petroleum Technology","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Real Gas Effect on Gas Slippage Phenomenon in Shale\",\"authors\":\"Yufei Chen, J. Leung, Changbao Jiang, A. Wojtanowicz\",\"doi\":\"10.1115/omae2021-62684\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The past decade has seen the rapid development of shale gas across the world, as the record-breaking success and on-going surge of commercial shale gas production in such unconventional reservoirs pose a tremendous potential to meet the global energy supply. However, questions have been raised about the intricate gas transport mechanisms in the shale matrix, of which the gas slippage phenomenon is one of the key mechanisms for enhancing the fluid transport capacity and, therefore, the overall gas production. Given that shale reservoirs are often naturally deposited in the deep underground formations at high pressure and temperature conditions (much deeper than most typical conventional deposits), the real gas effect cannot be ignored as gas properties may vary significantly under such conditions. The purpose of this study is thus to investigate the real gas effect on the gas slippage phenomenon in shale by taking into account the gas compressibility factor (Z) and Knudsen number (Kn).\\n This study begins with a specific determination of Z for natural gas at various pressures and temperatures under the real gas effect, followed by several calculations of the gas molecular mean free path at in-situ conditions. Following this, the real gas effect on gas slippage phenomenon in shale is specifically analyzed by examining the change in Knudsen number. Also discussed are the permeability deviation from Darcy flux (non-Darcy flow) due to the combination of gas slippage and real gas effect and the specific range of pressure and pore size for gas slippage phenomenon in shale reservoirs.\\n The results show that the gas molecular mean free path generally increases with decreasing pressure, especially at relatively low pressures (< 20 MPa). And, increasing temperature will cause the gas molecular mean free path to rise, also at low pressures. Knudsen number of an ideal gas is greater than that of a real gas; while lower than that of a real gas as pressure continues to rise. That is, the real gas effect suppresses the gas slippage phenomenon at low pressures, while enhancing it at high pressures. Also, Darcy’s law starts deviating when Kn > 0.01 and becomes invalid at high Knudsen numbers, and this deviation increases with decreasing pore size. No matter how pore size varies, this deviation increases with decreasing pressure, meaning that the gas slippage effect is significant at low pressures. Finally, slip flow dominates in the various gas transport mechanisms given the typical range of pressure and pore size in shale reservoirs (1 MPa < P < 80 MPa; 3 nm < d < 3000 nm). Gas transport in shale is predominantly controlled by the slippage effect that mostly occurs in micro- or meso-pores (10 to 200 nm). Moreover, considering the real gas effect would improve the accuracy for determining the specific pressure range of the gas slippage phenomenon in shale.\",\"PeriodicalId\":363084,\"journal\":{\"name\":\"Volume 10: Petroleum Technology\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 10: Petroleum Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/omae2021-62684\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 10: Petroleum Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/omae2021-62684","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在过去的十年里,页岩气在全球范围内得到了快速发展,非常规储层的商业页岩气产量破纪录地增长,为满足全球能源供应提供了巨大的潜力。然而,页岩基质中复杂的气体输运机制引起了人们的质疑,其中气体滑移现象是提高流体输运能力从而提高整体天然气产量的关键机制之一。由于页岩储层通常在高压和高温条件下自然沉积在地下深层地层中(比大多数典型的常规矿床深得多),因此在这种条件下,真实的气体效应不可忽视,因为气体性质可能会发生显著变化。因此,本研究的目的是通过考虑气体可压缩系数(Z)和Knudsen数(Kn),研究页岩中气体对气体滑移现象的真实影响。本研究首先确定了实际气体效应下不同压力和温度下天然气的Z值,然后计算了原位条件下的气体分子平均自由程。在此基础上,通过考察Knudsen数的变化,具体分析了页岩气滑脱现象的真实气体效应。讨论了气滑脱现象与实气效应共同作用导致的渗透率偏离达西通量(非达西流)的问题,以及页岩储层气滑脱现象的具体压力和孔径范围。结果表明,气体分子平均自由程总体上随压力的降低而增大,特别是在相对较低的压力下(< 20 MPa);温度升高会导致气体分子的平均自由程升高,在低压下也是如此。理想气体的克努森数大于实际气体的克努森数;而随着压力的不断升高,它又低于实际气体。即实际气体效应在低压下抑制了气体滑移现象,在高压下则增强了气体滑移现象。达西定律在Kn > 0.01时开始偏离,在高Knudsen数时失效,且偏离随孔径减小而增大。无论孔隙大小如何变化,这种偏差都随着压力的降低而增加,这意味着在低压下气体滑移效应显著。最后,在页岩储层典型压力和孔径范围内(1 MPa < P < 80 MPa;3 nm < d < 3000 nm)。页岩中的气体输运主要受滑动效应控制,主要发生在微孔或中孔(10 ~ 200nm)。此外,考虑实际气体效应可以提高确定页岩气滑脱现象比压力范围的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Real Gas Effect on Gas Slippage Phenomenon in Shale
The past decade has seen the rapid development of shale gas across the world, as the record-breaking success and on-going surge of commercial shale gas production in such unconventional reservoirs pose a tremendous potential to meet the global energy supply. However, questions have been raised about the intricate gas transport mechanisms in the shale matrix, of which the gas slippage phenomenon is one of the key mechanisms for enhancing the fluid transport capacity and, therefore, the overall gas production. Given that shale reservoirs are often naturally deposited in the deep underground formations at high pressure and temperature conditions (much deeper than most typical conventional deposits), the real gas effect cannot be ignored as gas properties may vary significantly under such conditions. The purpose of this study is thus to investigate the real gas effect on the gas slippage phenomenon in shale by taking into account the gas compressibility factor (Z) and Knudsen number (Kn). This study begins with a specific determination of Z for natural gas at various pressures and temperatures under the real gas effect, followed by several calculations of the gas molecular mean free path at in-situ conditions. Following this, the real gas effect on gas slippage phenomenon in shale is specifically analyzed by examining the change in Knudsen number. Also discussed are the permeability deviation from Darcy flux (non-Darcy flow) due to the combination of gas slippage and real gas effect and the specific range of pressure and pore size for gas slippage phenomenon in shale reservoirs. The results show that the gas molecular mean free path generally increases with decreasing pressure, especially at relatively low pressures (< 20 MPa). And, increasing temperature will cause the gas molecular mean free path to rise, also at low pressures. Knudsen number of an ideal gas is greater than that of a real gas; while lower than that of a real gas as pressure continues to rise. That is, the real gas effect suppresses the gas slippage phenomenon at low pressures, while enhancing it at high pressures. Also, Darcy’s law starts deviating when Kn > 0.01 and becomes invalid at high Knudsen numbers, and this deviation increases with decreasing pore size. No matter how pore size varies, this deviation increases with decreasing pressure, meaning that the gas slippage effect is significant at low pressures. Finally, slip flow dominates in the various gas transport mechanisms given the typical range of pressure and pore size in shale reservoirs (1 MPa < P < 80 MPa; 3 nm < d < 3000 nm). Gas transport in shale is predominantly controlled by the slippage effect that mostly occurs in micro- or meso-pores (10 to 200 nm). Moreover, considering the real gas effect would improve the accuracy for determining the specific pressure range of the gas slippage phenomenon in shale.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信