在线签名验证中最优特征集选择

Sudhir Rohilla, A. Sharma, R. K. Singla
{"title":"在线签名验证中最优特征集选择","authors":"Sudhir Rohilla, A. Sharma, R. K. Singla","doi":"10.1504/IJBM.2017.10009340","DOIUrl":null,"url":null,"abstract":"The online signature verification has attracted many researchers in recent past as it offers useful real life applications. This paper presents role of four types of feature sets as static, kinematics, structural and statistical in nature and these feature sets are analysed in context of online signature verification. The signatures are verified as single trajectory and in combination of multiple sub-trajectories. We have applied feature sets with all possible permutations to signature trajectory and sub-trajectories. We have computed a total of 80 features and categorised to four feature sets on the basis of their behavioural characteristics. The inter-valued symbolic representation technique has been used to clearly understand the impact of each individual feature set or in combinations of feature set. The simulation results are presented using popular benchmark dataset SVC 2004 where both sub-datasets as TASK1 and TASK2 are used. The experimental results show that it is a promising correlation between different feature sets and suggest the optimal combination among several combinations of feature sets.","PeriodicalId":262486,"journal":{"name":"Int. J. Biom.","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Optimal feature set selection in online signature verification\",\"authors\":\"Sudhir Rohilla, A. Sharma, R. K. Singla\",\"doi\":\"10.1504/IJBM.2017.10009340\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The online signature verification has attracted many researchers in recent past as it offers useful real life applications. This paper presents role of four types of feature sets as static, kinematics, structural and statistical in nature and these feature sets are analysed in context of online signature verification. The signatures are verified as single trajectory and in combination of multiple sub-trajectories. We have applied feature sets with all possible permutations to signature trajectory and sub-trajectories. We have computed a total of 80 features and categorised to four feature sets on the basis of their behavioural characteristics. The inter-valued symbolic representation technique has been used to clearly understand the impact of each individual feature set or in combinations of feature set. The simulation results are presented using popular benchmark dataset SVC 2004 where both sub-datasets as TASK1 and TASK2 are used. The experimental results show that it is a promising correlation between different feature sets and suggest the optimal combination among several combinations of feature sets.\",\"PeriodicalId\":262486,\"journal\":{\"name\":\"Int. J. Biom.\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Biom.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJBM.2017.10009340\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Biom.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJBM.2017.10009340","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

由于在线签名验证在现实生活中提供了实用的应用,近年来吸引了许多研究人员。本文介绍了静态、运动学、结构和统计四种特征集的作用,并在在线签名验证的背景下分析了这些特征集。这些特征被验证为单个轨迹和多个子轨迹的组合。我们将具有所有可能排列的特征集应用于签名轨迹和子轨迹。我们总共计算了80个特征,并根据它们的行为特征将其分类为四个特征集。价值间符号表示技术被用来清晰地理解每个单独的特征集或特征集的组合的影响。利用流行的基准数据集SVC 2004给出了仿真结果,其中使用了TASK1和TASK2两个子数据集。实验结果表明,不同特征集之间具有良好的相关性,并提出了几种特征集组合之间的最优组合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal feature set selection in online signature verification
The online signature verification has attracted many researchers in recent past as it offers useful real life applications. This paper presents role of four types of feature sets as static, kinematics, structural and statistical in nature and these feature sets are analysed in context of online signature verification. The signatures are verified as single trajectory and in combination of multiple sub-trajectories. We have applied feature sets with all possible permutations to signature trajectory and sub-trajectories. We have computed a total of 80 features and categorised to four feature sets on the basis of their behavioural characteristics. The inter-valued symbolic representation technique has been used to clearly understand the impact of each individual feature set or in combinations of feature set. The simulation results are presented using popular benchmark dataset SVC 2004 where both sub-datasets as TASK1 and TASK2 are used. The experimental results show that it is a promising correlation between different feature sets and suggest the optimal combination among several combinations of feature sets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信